diff --git a/images/publications/wmy_24.png b/images/publications/wmy_24.png new file mode 100644 index 00000000..ef186ea6 Binary files /dev/null and b/images/publications/wmy_24.png differ diff --git a/publications/index.html b/publications/index.html index 4d527baa..4994166a 100644 --- a/publications/index.html +++ b/publications/index.html @@ -8,7 +8,7 @@
Research work and relevant papers by our team
If you are interested in understanding how M²LInES is using machine learning to improve climate models, we have developed an educational JupyterBook Learning Machine Learning for Climate modeling with Lorenz 96 -. This JupyterBook describes the key research themes in M²LInES, through the use of a simple climate model and machine learning algorithms. You can run the notebooks yourself, contribute to the development of the JupyterBook or let us know what you think on GitHub https://github.com/m2lines/L96_demo.
Will Chapman and Judith Berner
Benefits of Deterministic and Stochastic Tendency Adjustments in a Climate Model
ArXiv 2023. DOI: 10.48550/arXiv.2308.15295
Christian Pedersen, Laure Zanna, Joan Bruna, Pavel Perezhogin
Reliable coarse-grained turbulent simulations through combined offline learning and neural emulation
ICML 2023 Workshop on Synergy of Scientific and Machine Learning Modeling DOI: 10.48550/arXiv.2307.13144
Emily Newsom, Laure Zanna, Jonathan Gregory
Background Pycnocline depth constrains Future Ocean Heat Uptake Efficiency
ArXiv 2023. DOI: 10.48550/arXiv.2307.11902
Fabrizio Falasca, Pavel Perezhogin, Laure Zanna
Causal inference in spatiotemporal climate fields through linear response theory
ArXiv 2023. DOI: 10.48550/arXiv.2306.14433
Sara Shamekh and Pierre Gentine
Learning Atmospheric Boundary Layer Turbulence
JAMES 2023. DOI: 10.22541/essoar.168748456.60017486/v1
Aakash Sane, Brandon G. Reichl, Alistair Adcroft, Laure Zanna
Parameterizing vertical mixing coefficients in the Ocean
+. This JupyterBook describes the key research themes in M²LInES, through the use of a simple climate model and machine learning algorithms. You can run the notebooks yourself, contribute to the development of the JupyterBook or let us know what you think on GitHub https://github.com/m2lines/L96_demo.
William Gregory, Mitchell Bushuk, Yongfei Zhang, Alistair Adcroft, Laure Zanna
Machine Learning for Online Sea Ice Bias Correction Within Global Ice-Ocean Simulations
Geophysical Research Letters 2024. DOI: 10.1029/2023GL106776
Will Chapman and Judith Berner
Benefits of Deterministic and Stochastic Tendency Adjustments in a Climate Model
ArXiv 2023. DOI: 10.48550/arXiv.2308.15295
Christian Pedersen, Laure Zanna, Joan Bruna, Pavel Perezhogin
Reliable coarse-grained turbulent simulations through combined offline learning and neural emulation
ICML 2023 Workshop on Synergy of Scientific and Machine Learning Modeling DOI: 10.48550/arXiv.2307.13144
Emily Newsom, Laure Zanna, Jonathan Gregory
Background Pycnocline depth constrains Future Ocean Heat Uptake Efficiency
AGU Geophysical Research Letters 2023. DOI: 10.1029/2023GL105673
Fabrizio Falasca, Pavel Perezhogin, Laure Zanna
A data-driven framework for dimensionality reduction and causal inference in climate fields
ArXiv 2023. DOI: 10.48550/arXiv.2306.14433
Sara Shamekh and Pierre Gentine
Learning Atmospheric Boundary Layer Turbulence
JAMES 2023. DOI: 10.22541/essoar.168748456.60017486/v1
Aakash Sane, Brandon G. Reichl, Alistair Adcroft, Laure Zanna
Parameterizing vertical mixing coefficients in the Ocean
Surface Boundary Layer using Neural Networks
JAMES 2023. DOI: 10.1029/2023MS003890
Sungduk Yu, ..., Michael S. Pritchard
ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid
multi-scale climate simulators
ArXiv 2023. DOI: 10.48550/arXiv.2306.08754
Karan Jakhar, Yifei Guan, Rambod Mojgani, Ashesh Chattopadhyay, Pedram Hassanzadeh, Laure Zanna
Learning Closed-form Equations for Subgrid-scale Closures from High-fidelity Data: Promises and Challenges.
ESS Open Archive. 2023. DOI: 10.22541/essoar.168677212.21341231/v1
Gustau Camps-Valls, Andreas Gerhardus, Urmi Ninad, Gherardo Varando, Georg Martius,
Emili Balaguer-Ballester, Ricardo Vinuesa, Emiliano Diaz, Laure Zanna, Jakob Runge
Discovering Causal Relations and Equations from Data.
Physics Reports 2023. DOI: 10.1016/j.physrep.2023.10.005
Rei Chemke and Janni Yuval
Human-induced weakening of the Northern Hemisphere tropical circulation
Nature. 2023. DOI: 10.1038/s41586-023-05903-1
William Gregory, Mitchell Bushuk, Alistair Adcroft, Yongfei Zhang, Laure Zanna
Deep learning of systematic sea ice model errors from data assimilation increments
JAMES 2023. DOI: 10.1029/2023MS003757
Janni Yuval and Paul A. O’Gorman
Neural-Network Parameterization of Subgrid Momentum Transport in the Atmosphere
JAMES 2023. DOI: 10.1029/2023MS003606
Karl Otness, Laure Zanna, Joan Bruna
Data-driven multiscale modeling of subgrid parameterizations in climate models
arXiv:2303.17496. Preprint submitted to ICLR Workshop on Climate Change AI. 2023. DOI: 10.48550/arXiv.2303.17496
Fabrizio Falasca, Andrew Brettin, Laure Zanna, Stephen M. Griffies, Jianjun Yin, Ming Zhao
Exploring the non-stationarity of coastal sea level probability distributions
arxiv.org:2211.04608. Preprint submitted to EDS. 2023. DOI: 10.48550/arXiv.2211.04608
Pavel Perezhogin, Laure Zanna, Carlos Fernandez-Granda
Generative data-driven approaches for stochastic subgrid parameterizations in an idealized ocean model
JAMES. 2023. DOI: 10.1029/2023MS003681
Andrew Ross, Ziwei Li, Pavel Perezhogin, Carlos Fernandez-Granda, Laure Zanna
Benchmarking of machine learning ocean subgrid parameterizations in an idealized model
JAMES. 2023. DOI: 10.1029/2022MS003258
Cheng Zhang, Pavel Perezhogin, Cem Gultekin, Alistair Adcroft, Carlos Fernandez-Granda, Laure Zanna
Implementation and Evaluation of a Machine Learned Mesoscale Eddy Parameterization into a
Numerical Ocean Circulation Model
JAMES 2023. DOI: 10.1029/2023MS003697
Qiyu Xiao, Dhruv Balwada, C. Spencer Jones, Mario Herrero-Gonzalez, K. Shafer Smith, Ryan Abernathey
Reconstruction of Surface Kinematics from Sea Surface Height Using Neural Networks
JAMES. 2023. DOI: 10.1029/2022MS003258
Takaya Uchida, Dhruv Balwada, Quentin Jamet, William K. Dewar, Bruno Deremble,
Thierry Penduff, Julien Le Sommer
Cautionary tales from the mesoscale eddy transport tensor
ScienceDirect 2023. DOI: 10.1016/j.ocemod.2023.102172
Adam Subel, Yifei Guan, Ashesh Chattopadhyay, Pedram Hassanzadeh
Explaining the physics of transfer learning in data-driven turbulence modeling
PNAS NEXUS 2023. DOI: 10.1093/pnasnexus/pgad015
Joan Bruna, Benjamin Peherstorfer, Eric Vanden-Eijnden
Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations
Journal of Computational Physics DOI: 10.1016/j.jcp.2023.112588
Peidong Wang, Janni Yuval, Paul A. O'Gorman
Non-local parameterization of atmospheric subgrid processes with neural networks
JAMES 2022. DOI: 10.1029/2022MS002984
Sara Shamekh, Kara D Lamb, Yu Huang, Pierre Gentine
Implicit learning of convective organization explains precipitation stochasticity
In review. 2022. DOI: 10.1002/essoar.10512517.1
Hannah Christensen and Laure Zanna
Parametrization in Weather and Climate Models
Oxford Research Encyclopedia of Climate Science. 2022. DOI: 10.1093/acrefore/9780190228620.013.826
Sheng Liu, Aakash Kaku, Haoxiang Huang, Laure Zanna, Weicheng Zhu, Narges Razavian,
Matan Leibovich, Sreyas Mohan, Boyang Yu, Jonathan Niles-Weed, Carlos Fernandez-Granda
Deep Probability Estimation
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:13746-13781, 2022.
DOI: 10.48550/arXiv.2111.10734
Nora Loose, Ryan Abernathey, Ian Grooms, Julius Busecke, Arthur Guillaumin,
Elizabeth Yankovsky, Gustavo Marques, Jacob Steinberg, Andrew Slavin Ross, Hemant Khatri,
Scott Bachman, Laure Zanna, Paige Martin
GCM-Filters: A Python Package for Diffusion-based Spatial Filtering of Gridded Data
Journal of Open Source Software 7(70), p.3947. 2022. DOI: 10.21105/joss.03947
Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, Redouane Lguensat
A posteriori learning for quasi-geostrophic turbulence parametrization
JAMES. 2022. DOI: 10.1029/2022MS003124
Lorenzo Zampieri, Gabriele Arduini, Marika Holland, Sarah Keeley, Kristian S. Mogensen,
Matthew D. Shupe, Steffen Tietsche
A machine learning correction model of the clear-sky bias over the Arctic sea ice in atmospheric reanalyses
J Earth and Space Science Open Archive. 2022 (preprint) DOI: 10.1002/essoar.10511269.1
Lei Chen and Joan Bruna
On Gradient Descent Convergence beyond the Edge of Stability
ArXiv 2022 DOI: 10.48550/arXiv.2206.04172
Mohamed Aziz Bhouri and Pierre Gentine
History-Based, Bayesian, Closure for Stochastic Parameterization: Application to Lorenz '96
ArXiv 2022. DOI: 10.48550/arXiv.2210.14488
Guillaumin, A. P., & Zanna, L. Stochastic-Deep Learning Parameterization of Ocean Momentum Forcing JAMES...