-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect.py
127 lines (109 loc) · 5.45 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python3
import datetime
import os
import sys
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
from PIL import Image
def add_python_paths():
# Append the research dir to PYTHONPATH. Some components in there must be imported.
tf_research_dir = os.getenv('TF_RESEARCH_DIR', '../tensorflow-models/research')
if not os.path.exists(tf_research_dir):
raise NotADirectoryError('Unable to find ', tf_research_dir)
if tf_research_dir not in sys.path:
sys.path.append(tf_research_dir)
sys.path.append(os.path.join(tf_research_dir, 'slim'))
print('Using Tensorflow Model Research dir at ', tf_research_dir)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
def main(_):
app_start_time = datetime.datetime.now()
tf.logging.set_verbosity(tf.logging.DEBUG)
print(
'\n'
'-------------------------------------------------------------------\n'
' Running {0}\n'
' Started on {1}\n'
'-------------------------------------------------------------------\n'
.format(__file__, app_start_time.isoformat())
)
add_python_paths()
ckpt_path = os.environ.get('TF_EXPORT_MODEL_DIR')
ckpt_path = os.path.join(ckpt_path, 'frozen_inference_graph.pb')
if not os.path.exists(ckpt_path):
raise FileExistsError('No such file: {}'.format(ckpt_path))
print('Using exported model graph at', ckpt_path)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(ckpt_path, 'rb') as fid:
print('Reading exported graph ...')
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
print('Graph file successfully imported')
from object_detection.utils import label_map_util
label_path = os.path.join('dataset', 'label_map.pbtxt')
NUM_CLASSES = 3
if not os.path.exists(label_path):
raise FileExistsError('File not found: {}'.format(label_path))
label_map = label_map_util.load_labelmap(label_path)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
PATH_TO_TEST_IMAGES_DIR = 'dataset/images/fedex_truck'
TEST_IMAGE_PATHS = os.listdir(PATH_TO_TEST_IMAGES_DIR)
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
from object_detection.utils import visualization_utils as vis_util
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image = Image.open(os.path.join(PATH_TO_TEST_IMAGES_DIR, image_path))
print('Loading image', image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
print('Begin detection on', image_path)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
print('Completed detection on', image_path)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
print('Displaying detection on', image_path)
plt.imshow(image_np)
plt.pause(3)
plt.close()
uptime = datetime.datetime.now() - app_start_time
print(
'\n'
'-------------------------------------------------------------------\n'
' Completed {0}\n'
' Duration was {1}\n'
'-------------------------------------------------------------------\n'
.format(__file__, str(uptime)))
if __name__ == '__main__':
tf.app.run()