forked from gudovskiy/yoloNCS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolo_main.py
189 lines (163 loc) · 6.76 KB
/
yolo_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/env/python3
import sys
import os
import getopt
from datetime import datetime
import numpy as np
import cv2
def interpret_output(output, img_width, img_height):
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train","tvmonitor"]
w_img = img_width
h_img = img_height
print(w_img, h_img)
threshold = 0.2
iou_threshold = 0.5
num_class = 20
num_box = 2
grid_size = 7
probs = np.zeros((7,7,2,20))
class_probs = np.reshape(output[0:980],(7,7,20))
# print class_probs
scales = np.reshape(output[980:1078],(7,7,2))
# print scales
boxes = np.reshape(output[1078:],(7,7,2,4))
offset = np.transpose(np.reshape(np.array([np.arange(7)]*14),(2,7,7)),(1,2,0))
boxes[:,:,:,0] += offset
boxes[:,:,:,1] += np.transpose(offset,(1,0,2))
boxes[:,:,:,0:2] = boxes[:,:,:,0:2] / 7.0
boxes[:,:,:,2] = np.multiply(boxes[:,:,:,2],boxes[:,:,:,2])
boxes[:,:,:,3] = np.multiply(boxes[:,:,:,3],boxes[:,:,:,3])
boxes[:,:,:,0] *= w_img
boxes[:,:,:,1] *= h_img
boxes[:,:,:,2] *= w_img
boxes[:,:,:,3] *= h_img
for i in range(2):
for j in range(20):
probs[:,:,i,j] = np.multiply(class_probs[:,:,j],scales[:,:,i])
filter_mat_probs = np.array(probs>=threshold,dtype='bool')
filter_mat_boxes = np.nonzero(filter_mat_probs)
boxes_filtered = boxes[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]]
probs_filtered = probs[filter_mat_probs]
classes_num_filtered = np.argmax(probs,axis=3)[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]]
argsort = np.array(np.argsort(probs_filtered))[::-1]
boxes_filtered = boxes_filtered[argsort]
probs_filtered = probs_filtered[argsort]
classes_num_filtered = classes_num_filtered[argsort]
for i in range(len(boxes_filtered)):
if probs_filtered[i] == 0 : continue
for j in range(i+1,len(boxes_filtered)):
if iou(boxes_filtered[i],boxes_filtered[j]) > iou_threshold :
probs_filtered[j] = 0.0
filter_iou = np.array(probs_filtered>0.0,dtype='bool')
boxes_filtered = boxes_filtered[filter_iou]
probs_filtered = probs_filtered[filter_iou]
classes_num_filtered = classes_num_filtered[filter_iou]
result = []
for i in range(len(boxes_filtered)):
result.append([classes[classes_num_filtered[i]],boxes_filtered[i][0],boxes_filtered[i][1],boxes_filtered[i][2],boxes_filtered[i][3],probs_filtered[i]])
return result
def iou(box1,box2):
tb = min(box1[0]+0.5*box1[2],box2[0]+0.5*box2[2])-max(box1[0]-0.5*box1[2],box2[0]-0.5*box2[2])
lr = min(box1[1]+0.5*box1[3],box2[1]+0.5*box2[3])-max(box1[1]-0.5*box1[3],box2[1]-0.5*box2[3])
if tb < 0 or lr < 0 : intersection = 0
else : intersection = tb*lr
return intersection / (box1[2]*box1[3] + box2[2]*box2[3] - intersection)
def show_results(img,results, img_width, img_height):
img_cp = img.copy()
disp_console = True
imshow = True
# if self.filewrite_txt :
# ftxt = open(self.tofile_txt,'w')
for i in range(len(results)):
x = int(results[i][1])
y = int(results[i][2])
w = int(results[i][3])//2
h = int(results[i][4])//2
if disp_console : print (' class : ' + results[i][0] + ' , [x,y,w,h]=[' + str(x) + ',' + str(y) + ',' + str(int(results[i][3])) + ',' + str(int(results[i][4]))+'], Confidence = ' + str(results[i][5]))
xmin = x-w
xmax = x+w
ymin = y-h
ymax = y+h
if xmin<0:
xmin = 0
if ymin<0:
ymin = 0
if xmax>img_width:
xmax = img_width
if ymax>img_height:
ymax = img_height
if imshow:
cv2.rectangle(img_cp,(xmin,ymin),(xmax,ymax),(0,255,0),2)
print (xmin, ymin, xmax, ymax)
cv2.rectangle(img_cp,(xmin,ymin-20),(xmax,ymin),(125,125,125),-1)
cv2.putText(img_cp,results[i][0] + ' : %.2f' % results[i][5],(xmin+5,ymin-7),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1)
if imshow :
cv2.imshow('YOLO detection',img_cp)
cv2.waitKey(1000)
def init_caffe():
# determine if caffe python bindings are available
# caffe needs 'sudo apt-get install python3-tk'
try:
import caffe
except ImportError:
print('Checking for CAFFE_ROOT environment path ...')
caffe_root = os.getenv('CAFFE_ROOT')
if not caffe_root:
sys.exit('Unable to locate the CAFFE directory.')
print('Found CAFFE at {}'.format(caffe_root))
caffe_python = os.path.join(caffe_root, 'python')
sys.path.insert(0, caffe_python)
try:
print('Importing python caffe module ...')
import caffe
except ImportError:
sys.exit('Unable to import python "caffe" module.')
# This can be set to 0 or 1
caffe_mode = os.getenv('CAFFE_MODE', 'cpu')
if caffe_mode.lower() == 'gpu':
gpu_id = os.getenv('CAFFE_GPU_ID', 0)
print('Setting CAFFE to GPU mode, gpu_id={}'.format(gpu_id))
caffe.set_mode_gpu()
caffe.set_device(gpu_id)
else:
print('Setting CAFFE to CPU mode')
caffe.set_mode_cpu()
def main(argv):
init_caffe()
model_filename = ''
weight_filename = ''
img_filename = ''
try:
opts, args = getopt.getopt(argv, "hm:w:i:")
print(opts)
except getopt.GetoptError:
print('yolo_main.py -m <model_file> -w <output_file> -i <img_file>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print('yolo_main.py -m <model_file> -w <weight_file> -i <img_file>')
sys.exit()
elif opt == "-m":
model_filename = arg
elif opt == "-w":
weight_filename = arg
elif opt == "-i":
img_filename = arg
print('model={} weight={} image={}'.format(model_filename, weight_filename, img_filename))
net = caffe.Net(model_filename, weight_filename, caffe.TEST)
img = caffe.io.load_image(img_filename) # load the image using caffe io
inputs = img
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
start = datetime.now()
out = net.forward_all(data=np.asarray([transformer.preprocess('data', inputs)]))
end = datetime.now()
elapsedTime = end-start
print('total time is " milliseconds'), elapsedTime.total_seconds()*1000
print(out.iteritems())
img_cv = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
results = interpret_output(out['result'][0], img.shape[1], img.shape[0]) # fc27 instead of fc12 for yolo_small
show_results(img_cv,results, img.shape[1], img.shape[0])
cv2.waitKey(10000)
if __name__=='__main__':
main(sys.argv[1:])