-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy pathLinear Regression.py
122 lines (88 loc) · 3.87 KB
/
Linear Regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#================================================================================================================
#----------------------------------------------------------------------------------------------------------------
# SIMPLE LINEAR REGRESSION
#----------------------------------------------------------------------------------------------------------------
#================================================================================================================
#Simple linear regression is applied to stock data, where the x values are time and y values are the stock closing price.
#This is not an ideal application of simple linear regression, but it suffices to be a good experiment.
import math
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import pandas
import datetime
#Quandl for getting stock data
import quandl
#for plotting
plt.style.use('ggplot')
class CustomLinearRegression:
def __init__(self):
self.intercept = 0
self.slope = 0
#arithmetic mean
def am(self, arr):
tot = 0.0
for i in arr:
tot+= i
return tot/len(arr)
#finding the slope in best fit line
def best_fit(self, dimOne, dimTwo):
self.slope = ( (self.am(dimOne) * self.am(dimTwo) ) - self.am(dimOne*dimTwo) ) / ( self.am(dimOne)**2 - self.am(dimOne**2) ) #formula for finding slope
return self.slope
#finding the best fit intercept
def y_intercept(self, dimOne ,dimTwo):
self.intercept = self.am( dimTwo ) - ( self.slope * self.am(dimOne) )
return self.intercept
#predict for future values based on model
def predict(self, ip):
ip = np.array(ip)
predicted = [(self.slope*param) + self.intercept for param in ip] #create a "predicted" array where the index corresponds to the index of the input
return predicted
#find the squared error
def squared_error(self, original, model):
return sum((model - original) **2)
#find co-efficient of determination for R^2
def cod(self, original, model):
am_line = [self.am(original) for y in original]
sq_error = self.squared_error(original, model)
sq_error_am = self.squared_error(original, am_line)
return 1 - (sq_error/sq_error_am) #R^2 is nothing but 1 - of squared error for our model / squared error if the model only consisted of the mean
def main():
stk = quandl.get("WIKI/TSLA")
simpl_linear_regression = CustomLinearRegression()
#reset index to procure date - date was the initial default index
stk = stk.reset_index()
#Add them headers
stk = stk[['Date','Adj. Open','Adj. High','Adj. Low','Adj. Close', 'Volume']]
stk['Date'] = pandas.to_datetime(stk['Date'])
stk['Date'] = (stk['Date'] - stk['Date'].min()) / np.timedelta64(1,'D')
#The column that needs to be forcasted using linear regression
forecast_col = 'Adj. Close'
#take care of NA's
stk.fillna(-999999, inplace = True)
stk['label'] = stk[forecast_col]
#IN CASE THE INPUT IS TO BE TAKEN IN FROM THE COMMAND PROMPT UNCOMMENT THE LINES BELOW
#takes in input from the user
#x = list(map(int, input("Enter x: \n").split()))
#y = list(map(int, input("Enter y: \n").split()))
#convert to an numpy array with datatype as 64 bit float.
#x = np.array(x, dtype = np.float64)
#y = np.array(y, dtype = np.float64)
stk.dropna(inplace = True)
x = np.array(stk['Date'])
y = np.array(stk['label'])
#Always in the order: first slope, then intercept
slope = simpl_linear_regression.best_fit(x, y) #find slope
intercept = simpl_linear_regression.y_intercept(x, y) #find the intercept
ip = list(map(int, input("Enter x to predict y: \n").split()))
line = simpl_linear_regression.predict(ip) #predict based on model
reg = [(slope*param) + intercept for param in x]
print("Predicted value(s) after linear regression :", line)
r_sqrd = simpl_linear_regression.cod(y, reg)
print("R^2 Value: " ,r_sqrd)
plt.scatter(x, y)
plt.scatter(ip, line, color = "red")
plt.plot(x, reg)
plt.show()
if __name__ == "__main__":
main()