-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
315 lines (259 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Print system configurations
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#import tensorflow as tf
import transformers as trans
import keras
import torch
import os
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping
import tensorflow as tf
print ("Keras version", keras.__version__)
print ("Tensorflow version", tf.__version__)
print ("Torch version", torch.__version__)
print ("Transformers version", trans.__version__)
device_name = tf.test.gpu_device_name() #"/device:CPU:0" #tf.test.gpu_device_name()
if len(device_name) > 0:
print("Found GPU at: {}".format(device_name))
else:
device_name = "/device:CPU:0"
print("No GPU, using {}.".format(device_name))
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Read command line arguments
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--states_num", type=int, help="Number of states/provinces of the studied country.", default=13)
parser.add_argument("--max_words", type=int, help="Max number of words to analyze per tweet.", default=50)
parser.add_argument("--features_num", type=int, help="Number of features to use. default tweet and meta data", default=3)
parser.add_argument("--epochs", type=int, help="Number of epochs.", default=5)
parser.add_argument("--batch", type=int, help="Batch size.", default=32)
parser.add_argument("--learning_rate", type=float, help="Learning rate.", default=5e-05)
parser.add_argument("--tweets_per_user", type=int, help="Number of tweets per user.", default=1000)
parser.add_argument("--lang", type=str, help="Tweet language.", default="Arabic")
parser.add_argument("--data_file", type=str, help="Input data file name.", default="")
parser.add_argument("--model_name", type=str, help="Model name.", default="bert-base-uncased")
parser.add_argument("--hidden_layer_size", type=int, help="Hidden layer size", default=128)
parser.add_argument("--ASCII", type=int, help="Use ASCII fields.", default=0)
parser.add_argument("--load", type=int, help="Load previous weights.", default=0)
parser.add_argument("--checkpoint_file", type=str, help="Checkpoint file to load.", default="")
parser.add_argument("--filters", type=int, help="Number of filters.", default=256)
parser.add_argument("--lstmlayers", type=int, help="Number of lstm layers.", default=2)
parser.add_argument("--truncatingpost", type=int, help="Tokenizer truncating post.", default=1)
parser.add_argument("--paddingpost", type=int, help="Tokenizer padding post.", default=1)
parser.add_argument("--droprate", type=float, help="LSTM drop rate.", default=0.5)
args = parser.parse_args()
STATES_NUM = args.states_num
print("Number of states/provinces: " + str(args.states_num))
MAX_LEN = args.max_words
print("maximum words: " + str(args.max_words))
FEATURES_NUM = args.features_num
print("Number of features: " + str(args.features_num))
N_EPOCHS = args.epochs
print("Epochs: " + str(args.epochs))
BATCH_SIZE = args.batch
print("Batch size: " + str(args.batch))
LEARNING_RATE = args.learning_rate
print("Learning rate: " + str(args.learning_rate))
TWEETS_PER_USER = args.tweets_per_user
print("Tweets per user: " + str(args.tweets_per_user))
LANGUAGE = args.lang
print("Tweets language: " + str(args.lang))
FILE_NAME = args.data_file
print("Data file name: " + str(args.data_file))
MODEL_NAME = args.model_name
print("The model name: " + str(args.model_name))
HIDDEN_LAYER_SIZE = args.hidden_layer_size
print("The LSTM model hidden layer size: " + str(args.hidden_layer_size))
ASCII = args.ASCII
print("Use ASCII Fields: " + str(args.ASCII))
LOAD = args.load
print("Load previous weights: " + str(args.load))
CHECKPOINT_FILE = args.checkpoint_file
print("Checkpoint file: " + CHECKPOINT_FILE)
FILTERS = args.filters
print("Number of filters: " + str(args.filters))
LSTMLayers = args.lstmlayers
print("Number of layers: " + str(args.lstmlayers))
TruncatingPost = args.truncatingpost
print("Tokenizer tuncating post: " + str(args.truncatingpost))
PaddingPost = args.paddingpost
print("Tokenizer padding post: " + str(args.paddingpost))
DROP_RATE = args.droprate
print("LSTM drop rate: " + str(args.droprate))
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Prepare the dataset
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
from Dataset import Dataset
s=str(TWEETS_PER_USER)
if (TWEETS_PER_USER>=1000):
s = "all"
dataset = Dataset(_filename=FILE_NAME, _lang=LANGUAGE, _tweets_per_user=s,_features_num=FEATURES_NUM, _ASCII=ASCII)
labels, features, x_train, x_val, x_test, y_train, y_val, y_test = dataset.preprocess()
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Create the model and construct the dataset
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
from Models.CNN import CNN
from Models.Bert import Bert
from Models.LSTMModel import LSTMModel
from Models.AttentionModel import Attention
from Models.Transformer import Transformer
Arabic =1 if (LANGUAGE == "Arabic") else 0
# Construct dataset
if ("Attention" in MODEL_NAME):
attention = Attention( x_train, y_train, x_val, y_val, STATES_NUM, MODEL_NAME, MAX_LEN, FILTERS, TruncatingPost,PaddingPost, DROP_RATE, Arabic)
attention.construct_dataset()
elif ("CNN" in MODEL_NAME):
cnn = CNN(x_train, y_train, x_val, y_val, STATES_NUM, MODEL_NAME,MAX_LEN,TruncatingPost,PaddingPost, FILTERS, DROP_RATE, Arabic)
cnn.construct_dataset()
elif ("LSTM" in MODEL_NAME):
lstm = LSTMModel(x_train, y_train, x_val, y_val, STATES_NUM, MODEL_NAME, MAX_LEN, HIDDEN_LAYER_SIZE, FILTERS, TruncatingPost,PaddingPost, DROP_RATE, LSTMLayers, Arabic)
lstm.construct_dataset()
elif ("Bert" in MODEL_NAME):
bert = Bert( x_train, y_train, x_val, y_val, STATES_NUM, MODEL_NAME, MAX_LEN, Arabic)
bert.construct_dataset(BATCH_SIZE)
elif ("Transformer" in MODEL_NAME):
transformer = Transformer( x_train, y_train, x_val, y_val, STATES_NUM, MODEL_NAME, MAX_LEN, FILTERS, TruncatingPost,PaddingPost, DROP_RATE, LSTMLayers, Arabic)
transformer.construct_dataset()
else:
print("Undefined Model Type!!!!! The only known models are CNN, Bert, LSTM, Attention, and Transfomer. Please use any of them.")
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Compile the model
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#from official.nlp import optimization
from keras.optimizers import Adam
#from tensorflow.keras.optimizers.legacy import Adam
import transformers
from transformers import AdamWeightDecay
tf.random.set_seed(42)
metrics = [tf.keras.metrics.SparseCategoricalAccuracy('accuracy', dtype=tf.float32)]
loss = tf.keras.losses.SparseCategoricalCrossentropy()
loss_desc = str(loss)
#AdamW Optimizer Setup
init_lr = LEARNING_RATE #5e-05 #2e-5
train_data_size = len(x_train)
steps_per_epoch = train_data_size // BATCH_SIZE
num_train_steps = steps_per_epoch * N_EPOCHS
num_warmup_steps = num_train_steps // 10
if ("Transformer" in MODEL_NAME) :
#optimizer = optimization.create_optimizer(init_lr=init_lr, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, optimizer_type='adamw')
optimizer_type = Adam
optimizer = optimizer_type(learning_rate=init_lr)
elif ("Bert" in MODEL_NAME) or ("Marabert" in MODEL_NAME):
#optimizer = AdamWeightDecay(learning_rate =init_lr)
optimizer=tf.keras.optimizers.AdamW(learning_rate=init_lr)
else:
optimizer_type = Adam
optimizer = optimizer_type(learning_rate=init_lr)
optimizer_desc = str(optimizer)
with tf.device(device_name): #'/CPU:0'):
if ("Attention" in MODEL_NAME):
model = attention.define_model()
elif ("LSTM" in MODEL_NAME):
model = lstm.define_model()
elif ("Bert" in MODEL_NAME):
model = bert.define_model()
elif ("CNN" in MODEL_NAME):
model = cnn.define_model()
elif ("Transformer" in MODEL_NAME):
model = transformer.define_model()
else:
print("Undefined Model Type!!!!! The only known models are CNN, Bert, LSTM, Attention, and Transfomer. Please use any of them.")
model.compile(optimizer= optimizer, loss=loss, metrics=['accuracy'])
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Train and save the model
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
import tensorflow.keras.backend as K
import pickle
filename=MODEL_NAME.replace('/','') +"_adamw_"+FILE_NAME.replace('/','')+"_"+str(FEATURES_NUM)+"features_"+str(TWEETS_PER_USER)+"tweetsperuser_"+str(MAX_LEN)+"words_"+str(BATCH_SIZE)+"batch_"+str(LEARNING_RATE)+"learningrate"
Model_path ="/kaggle/working/"
Model_file = Model_path+filename+".keras"
with open(Model_path+filename+".txt", "w") as f:
f.write("Model:\n "+MODEL_NAME+"\n\n")
f.write("Tokenizer:\n BertTokenizer\n\n")
f.write("Tweets per user:"+str(TWEETS_PER_USER)+"\n\n")
f.write("Dataset Train size:\n "+str(len(x_train))+ " Validation size: "+str(len(x_val))+ " Test size: "+str(len(x_test)) +"\n\n")
f.write("Optimizer:\n "+optimizer_desc+" Learning rate: "+str(init_lr)+" num_train_steps: "+str(num_train_steps)+" num_warmup_steps: "+str(num_warmup_steps)+"\n\n")
f.write("Loss:\n "+loss_desc+"\n\n")
f.write("Max words length per tweet:\n "+str(MAX_LEN)+"\n\n")
f.write("Batch size:\n "+str(BATCH_SIZE)+"\n\n")
f.write("Epochs:\n "+str(N_EPOCHS)+"\n\n")
if (not CHECKPOINT_FILE):
checkpoint_path = "/kaggle/working/"+filename+".keras"
else:
checkpoint_path = "/kaggle/working/"+CHECKPOINT_FILE+".keras"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, mode='min', save_best_only=True, monitor='val_loss')
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=2)
Optimizer_File = Model_path+filename+"optimizer.pkl"
if (LOAD == 1):
MODEL_FILE = Model_file
else:
MODEL_FILE = None
with tf.device(device_name): #'/CPU:0'):
if ("Attention" in MODEL_NAME):
attention.fit_model(es,cp_callback,N_EPOCHS, BATCH_SIZE,Optimizer_File, MODEL_FILE)
elif ("LSTM" in MODEL_NAME):
lstm.fit_model(es, cp_callback,N_EPOCHS,BATCH_SIZE,Optimizer_File, MODEL_FILE)
elif ("Bert" in MODEL_NAME):
bert.fit_model(es, cp_callback,N_EPOCHS, Model_path+filename, Optimizer_File, MODEL_FILE)
elif ("CNN" in MODEL_NAME):
cnn.fit_model(es, cp_callback,N_EPOCHS,BATCH_SIZE, Optimizer_File, MODEL_FILE)
elif ("Transformer" in MODEL_NAME):
transformer.fit_model(es,cp_callback,N_EPOCHS, BATCH_SIZE, Optimizer_File, MODEL_FILE)
else:
print("Undefined Model Type!!!!! The only known models are CNN, Bert, LSTM, Attention, and Transfomer. Please use any of them.")
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Evaluate the model
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, cohen_kappa_score, roc_auc_score, confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import classification_report
with tf.device(device_name):#'/CPU:0'):
if ("Attention" in MODEL_NAME):
attention.save_model(checkpoint_path, Model_path+filename+".keras", Optimizer_File)
x_test_predict = attention.predict_model(x_test)
elif ("LSTM" in MODEL_NAME):
lstm.save_model(checkpoint_path, Model_path+filename+".keras", Optimizer_File)
x_test_predict = lstm.predict_model(x_test)
elif ("Bert" in MODEL_NAME):
bert.save_model(checkpoint_path, Model_path+filename+".keras", Optimizer_File)
x_test_predict = bert.predict_model(x_test)
elif ("CNN" in MODEL_NAME):
cnn.save_model(checkpoint_path, Model_path+filename+".keras", Optimizer_File)
x_test_predict = cnn.predict_model(x_test)
elif ("Transformer" in MODEL_NAME):
transformer.save_model(checkpoint_path, Model_path+filename+".keras", Optimizer_File)
x_test_predict = transformer.predict_model(x_test)
else:
print("Undefined Model Type!!!!! The only known models are CNN, Bert, LSTM, Attention, and Transfomer. Please use any of them.")
# accuracy: (tp + tn) / (p + n)
accuracy = accuracy_score(y_test, x_test_predict)
print('Accuracy: %f' % accuracy)
# precision tp / (tp + fp)
precision = precision_score(y_test, x_test_predict, average='micro')
print('Precision: %f' % precision)
precision = precision_score(y_test, x_test_predict, average='weighted')
print('Precision weighted: %f' % precision)
# recall: tp / (tp + fn)
recall = recall_score(y_test, x_test_predict, average='micro')
print('Recall: %f' % recall)
recall = recall_score(y_test, x_test_predict, average='weighted')
print('Recall weighted: %f' % recall)
# f1: 2 tp / (2 tp + fp + fn)
f1 = f1_score(y_test, x_test_predict, average='micro')
print('F1 score: %f' % f1)
f1 = f1_score(y_test, x_test_predict, average='weighted')
print('F1 score weighted: %f' % f1)
# kappa
kappa = cohen_kappa_score(y_test, x_test_predict)
print('Cohens kappa: %f' % kappa)
# confusion matrix
matrix = confusion_matrix(y_test, x_test_predict)
print(matrix)
from textwrap import wrap
labels = [ '\n'.join(wrap(l, 8)) for l in labels ]
disp = ConfusionMatrixDisplay(confusion_matrix=matrix, display_labels= labels)
disp.plot()
plt.show()
print(classification_report(y_test, x_test_predict))