forked from community-ssu/osso-calculator-engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshs.c
731 lines (657 loc) · 19 KB
/
shs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/*
* shs - old Secure Hash Standard
*
**************************************************************************
* This version implements the old Secure Hash Algorithm specified by *
* (FIPS Pub 180). This version is kept for backward compatibility with *
* shs version 2.10.1. See the shs utility for the new standard. *
**************************************************************************
*
* Written 2 September 1992, Peter C. Gutmann.
*
* This file was Modified/Re-written by:
*
* Landon Curt Noll
* http://www.isthe.com/chongo/
*
* chongo <was here> /\../\
*
* This code has been placed in the public domain. Please do not
* copyright this code.
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS. IN NO EVENT SHALL LANDON CURT
* NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Based on Version 2.11 (09 Mar 1995) from Landon Curt Noll's
* (http://www.isthe.com/chongo/) shs hash program.
*
* @(#) $Revision: 29.3 $
* @(#) $Id: shs.c,v 29.3 2004/02/23 08:14:15 chongo Exp $
* @(#) $Source: /usr/local/src/cmd/calc/RCS/shs.c,v $
*
* This file is not covered under version 2.1 of the GNU LGPL.
*
****
*
* The SHS algorithm hashes 32 bit unsigned values, 16 at a time.
* It further specifies that strings are to be converted into
* 32 bit values in BIG ENDIAN order. That is on little endian
* machines, strings are byte swapped into BIG ENDIAN order before
* they are taken 32 bit at a time. Even so, when hashing 32 bit
* numeric values the byte order DOES NOT MATTER because the
* algorithm works off of their numeric value, not their byte order.
*
* In calc, we want to hash equal values to the same hash value.
* For the most part, we will be hashing arrays of HALF's instead
* of strings. For this reason, the functions below do not byte
* swap on little endian machines automatically. Instead it is
* the responsibility of the caller of the internal SHS function
* to ensure that the values are already in the canonical 32 bit
* numeric value form.
*/
#include <stdio.h>
#include "longbits.h"
/*#include "align32.h" -TL*/
#include "endian_calc.h"
#include "value.h"
#include "hash.h"
#include "shs.h"
/*
* The SHS f()-functions. The f1 and f3 functions can be optimized
* to save one boolean operation each - thanks to Rich Schroeppel,
* rcs@cs.arizona.edu for discovering this.
*
* f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z)))
* f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y)))
*/
#define f1(x,y,z) (z ^ (x&(y^z))) /* Rounds 0-19 */
#define f2(x,y,z) (x^y^z) /* Rounds 20-39 */
#define f3(x,y,z) ((x&y) | (z&(x|y))) /* Rounds 40-59 */
#define f4(x,y,z) (x^y^z) /* Rounds 60-79 */
/* The SHS Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* SHS initial values */
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
/* 32-bit rotate left - kludged with shifts */
#define LEFT_ROT(X,n) (((X)<<(n)) | ((X)>>(32-(n))))
/*
* The initial expanding function. The hash function is defined over an
* 80-word expanded input array W, where the first 16 are copies of the input
* data, and the remaining 64 are defined by
*
* W[i] = W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3]
*
* This implementation generates these values on the fly in a circular
* buffer - thanks to Colin Plumb (colin@nyx10.cs.du.edu) for this
* optimization.
*/
#define exor(W,i) (W[i&15] ^= (W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15]))
/*
* The prototype SHS sub-round. The fundamental sub-round is:
*
* a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data;
* b' = a;
* c' = LEFT_ROT(b,30);
* d' = c;
* e' = d;
*
* but this is implemented by unrolling the loop 5 times and renaming the
* variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
* This code is then replicated 20 times for each of the 4 functions, using
* the next 20 values from the W[] array each time.
*/
#define subRound(a, b, c, d, e, f, k, data) \
(e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30))
/*
* forward declarations
*/
static void shsInit(HASH*);
static void shsTransform(USB32*, USB32*);
static void shsUpdate(HASH*, USB8*, USB32);
static void shsFinal(HASH*);
static void shs_chkpt(HASH*);
static void shs_note(int, HASH*);
static void shs_type(int, HASH*);
void shs_init_state(HASH*);
static ZVALUE shs_final_state(HASH*);
static int shs_cmp(HASH*, HASH*);
static void shs_print(HASH*);
/*
* shsInit - initialize the SHS state
*/
static void
shsInit(HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
/* Set the h-vars to their initial values */
dig->digest[0] = h0init;
dig->digest[1] = h1init;
dig->digest[2] = h2init;
dig->digest[3] = h3init;
dig->digest[4] = h4init;
/* Initialise bit count */
dig->countLo = 0;
dig->countHi = 0;
dig->datalen = 0;
}
/*
* shsTransform - perform the SHS transformatio
*
* Note that this code, like MD5, seems to break some optimizing compilers.
* It may be necessary to split it into sections, eg based on the four
* subrounds. One may also want to roll each subround into a loop.
*/
static void
shsTransform(USB32 *digest, USB32 *W)
{
USB32 A, B, C, D, E; /* Local vars */
/* Set up first buffer and local data buffer */
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
subRound(A, B, C, D, E, f1, K1, W[ 0]);
subRound(E, A, B, C, D, f1, K1, W[ 1]);
subRound(D, E, A, B, C, f1, K1, W[ 2]);
subRound(C, D, E, A, B, f1, K1, W[ 3]);
subRound(B, C, D, E, A, f1, K1, W[ 4]);
subRound(A, B, C, D, E, f1, K1, W[ 5]);
subRound(E, A, B, C, D, f1, K1, W[ 6]);
subRound(D, E, A, B, C, f1, K1, W[ 7]);
subRound(C, D, E, A, B, f1, K1, W[ 8]);
subRound(B, C, D, E, A, f1, K1, W[ 9]);
subRound(A, B, C, D, E, f1, K1, W[10]);
subRound(E, A, B, C, D, f1, K1, W[11]);
subRound(D, E, A, B, C, f1, K1, W[12]);
subRound(C, D, E, A, B, f1, K1, W[13]);
subRound(B, C, D, E, A, f1, K1, W[14]);
subRound(A, B, C, D, E, f1, K1, W[15]);
subRound(E, A, B, C, D, f1, K1, exor(W,16));
subRound(D, E, A, B, C, f1, K1, exor(W,17));
subRound(C, D, E, A, B, f1, K1, exor(W,18));
subRound(B, C, D, E, A, f1, K1, exor(W,19));
subRound(A, B, C, D, E, f2, K2, exor(W,20));
subRound(E, A, B, C, D, f2, K2, exor(W,21));
subRound(D, E, A, B, C, f2, K2, exor(W,22));
subRound(C, D, E, A, B, f2, K2, exor(W,23));
subRound(B, C, D, E, A, f2, K2, exor(W,24));
subRound(A, B, C, D, E, f2, K2, exor(W,25));
subRound(E, A, B, C, D, f2, K2, exor(W,26));
subRound(D, E, A, B, C, f2, K2, exor(W,27));
subRound(C, D, E, A, B, f2, K2, exor(W,28));
subRound(B, C, D, E, A, f2, K2, exor(W,29));
subRound(A, B, C, D, E, f2, K2, exor(W,30));
subRound(E, A, B, C, D, f2, K2, exor(W,31));
subRound(D, E, A, B, C, f2, K2, exor(W,32));
subRound(C, D, E, A, B, f2, K2, exor(W,33));
subRound(B, C, D, E, A, f2, K2, exor(W,34));
subRound(A, B, C, D, E, f2, K2, exor(W,35));
subRound(E, A, B, C, D, f2, K2, exor(W,36));
subRound(D, E, A, B, C, f2, K2, exor(W,37));
subRound(C, D, E, A, B, f2, K2, exor(W,38));
subRound(B, C, D, E, A, f2, K2, exor(W,39));
subRound(A, B, C, D, E, f3, K3, exor(W,40));
subRound(E, A, B, C, D, f3, K3, exor(W,41));
subRound(D, E, A, B, C, f3, K3, exor(W,42));
subRound(C, D, E, A, B, f3, K3, exor(W,43));
subRound(B, C, D, E, A, f3, K3, exor(W,44));
subRound(A, B, C, D, E, f3, K3, exor(W,45));
subRound(E, A, B, C, D, f3, K3, exor(W,46));
subRound(D, E, A, B, C, f3, K3, exor(W,47));
subRound(C, D, E, A, B, f3, K3, exor(W,48));
subRound(B, C, D, E, A, f3, K3, exor(W,49));
subRound(A, B, C, D, E, f3, K3, exor(W,50));
subRound(E, A, B, C, D, f3, K3, exor(W,51));
subRound(D, E, A, B, C, f3, K3, exor(W,52));
subRound(C, D, E, A, B, f3, K3, exor(W,53));
subRound(B, C, D, E, A, f3, K3, exor(W,54));
subRound(A, B, C, D, E, f3, K3, exor(W,55));
subRound(E, A, B, C, D, f3, K3, exor(W,56));
subRound(D, E, A, B, C, f3, K3, exor(W,57));
subRound(C, D, E, A, B, f3, K3, exor(W,58));
subRound(B, C, D, E, A, f3, K3, exor(W,59));
subRound(A, B, C, D, E, f4, K4, exor(W,60));
subRound(E, A, B, C, D, f4, K4, exor(W,61));
subRound(D, E, A, B, C, f4, K4, exor(W,62));
subRound(C, D, E, A, B, f4, K4, exor(W,63));
subRound(B, C, D, E, A, f4, K4, exor(W,64));
subRound(A, B, C, D, E, f4, K4, exor(W,65));
subRound(E, A, B, C, D, f4, K4, exor(W,66));
subRound(D, E, A, B, C, f4, K4, exor(W,67));
subRound(C, D, E, A, B, f4, K4, exor(W,68));
subRound(B, C, D, E, A, f4, K4, exor(W,69));
subRound(A, B, C, D, E, f4, K4, exor(W,70));
subRound(E, A, B, C, D, f4, K4, exor(W,71));
subRound(D, E, A, B, C, f4, K4, exor(W,72));
subRound(C, D, E, A, B, f4, K4, exor(W,73));
subRound(B, C, D, E, A, f4, K4, exor(W,74));
subRound(A, B, C, D, E, f4, K4, exor(W,75));
subRound(E, A, B, C, D, f4, K4, exor(W,76));
subRound(D, E, A, B, C, f4, K4, exor(W,77));
subRound(C, D, E, A, B, f4, K4, exor(W,78));
subRound(B, C, D, E, A, f4, K4, exor(W,79));
/* Build message digest */
digest[0] += A;
digest[1] += B;
digest[2] += C;
digest[3] += D;
digest[4] += E;
}
/*
* shsUpdate - update SHS with arbitrary length data
*/
static void
shsUpdate(HASH *state, USB8 *buffer, USB32 count)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
USB32 datalen = dig->datalen;
USB32 cpylen;
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
unsigned int i;
#endif
/*
* Update the full count, even if some of it is buffered for later
*/
SHSCOUNT(dig, count);
/* determine the size we need to copy */
cpylen = SHS_CHUNKSIZE - datalen;
/* case: new data will not fill the buffer */
if (cpylen > count) {
memcpy((char *)dig->data + datalen,
(char *)buffer, count);
dig->datalen = datalen+count;
return;
}
/* case: buffer will be filled */
memcpy((char *)dig->data + datalen, (char *)buffer, cpylen);
/*
* process data in SHS_CHUNKSIZE chunks
*/
for (;;) {
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
for (i=0; i < SHS_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
}
#endif
shsTransform(dig->digest, dig->data);
buffer += cpylen;
count -= cpylen;
if (count < SHS_CHUNKSIZE)
break;
cpylen = SHS_CHUNKSIZE;
memcpy((char *) dig->data, (char *) buffer, cpylen);
}
/*
* Handle any remaining bytes of data.
*/
if (count > 0) {
memcpy((char *)dig->data, (char *)buffer, count);
}
dig->datalen = count;
}
/*
* shsFinal - perform final SHS transforms
*
* At this point we have less than a full chunk of data remaining
* (and possibly no data) in the shs state data buffer.
*
* First we append a final 0x80 byte.
*
* Next if we have more than 56 bytes, we will zero fill the remainder
* of the chunk, transform and then zero fill the first 56 bytes.
* If we have 56 or fewer bytes, we will zero fill out to the 56th
* chunk byte. Regardless, we wind up with 56 bytes data.
*
* Finally we append the 64 bit length on to the 56 bytes of data
* remaining. This final chunk is transformed.
*/
static void
shsFinal(HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
long count = (long)(dig->datalen);
USB32 lowBitcount;
USB32 highBitcount;
USB8 *data = (USB8 *) dig->data;
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
unsigned int i;
#endif
/*
* If processing bytes, set the first byte of padding to 0x80.
* if processing words: on a big-endian machine set the first
* byte of padding to 0x80, on a little-endian machine set
* the first four bytes to 0x00000080
* This is safe since there is always at least one byte or word free
*/
/* Pad to end of chunk */
memset(data + count, 0, SHS_CHUNKSIZE - count);
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
data[count] = 0x80;
for (i=0; i < SHS_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
} else {
if (count % 4) {
math_error("This should not happen in shsFinal");
/*NOTREACHED*/
}
data[count + 3] = 0x80;
}
#else
data[count] = 0x80;
#endif
if (count >= SHS_CHUNKSIZE-8) {
shsTransform(dig->digest, dig->data);
/* Now fill another chunk with 56 bytes */
memset(data, 0, SHS_CHUNKSIZE-8);
}
/*
* Append length in bits and transform
*
* We assume that bit count is a multiple of 8 because we have
* only processed full bytes.
*/
highBitcount = dig->countHi;
lowBitcount = dig->countLo;
dig->data[SHS_HIGH] = (highBitcount << 3) | (lowBitcount >> 29);
dig->data[SHS_LOW] = (lowBitcount << 3);
shsTransform(dig->digest, dig->data);
dig->datalen = 0;
}
/*
* shs_chkpt - checkpoint a SHS state
*
* given:
* state the state to checkpoint
*
* This function will ensure that the the hash chunk buffer is empty.
* Any partially hashed data will be padded out with 0's and hashed.
*/
static void
shs_chkpt(HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
unsigned int i;
#endif
/*
* checkpoint if partial buffer exists
*/
if (dig->datalen > 0) {
/* pad to the end of the chunk */
memset((USB8 *)dig->data + dig->datalen, 0,
SHS_CHUNKSIZE-dig->datalen);
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
for (i=0; i < SHS_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
}
#endif
/* transform padded chunk */
shsTransform(dig->digest, dig->data);
SHSCOUNT(dig, SHS_CHUNKSIZE-dig->datalen);
/* empty buffer */
dig->datalen = 0;
}
return;
}
/*
* shs_note - note a special value
*
* given:
* state the state to hash
* special a special value (SHS_HASH_XYZ) to note
*
* This function will note that a special value is about to be hashed.
* Types include negative values, complex values, division, zero numeric
* and array of HALFs.
*/
static void
shs_note(int special, HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
unsigned int i;
/*
* change state to reflect a special value
*/
dig->digest[0] ^= special;
for (i=1; i < SHS_DIGESTWORDS; ++i) {
dig->digest[i] ^= (special + dig->digest[i-1] + i);
}
return;
}
/*
* shs_type - note a VALUE type
*
* given:
* state the state to hash
* type the VALUE type to note
*
* This function will note that a type of value is about to be hashed.
* The type of a VALUE will be noted. For purposes of hash comparison,
* we will do nothing with V_NUM and V_COM so that the other functions
* can hash to the same value regardless of if shs_value() is called
* or not. We also do nothing with V_STR so that a hash of a string
* will produce the same value as the standard hash function.
*/
static void
shs_type(int type, HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
unsigned int i;
/*
* ignore NUMBER and COMPLEX
*/
if (type == V_NUM || type == V_COM || type == V_STR) {
return;
}
/*
* change state to reflect a VALUE type
*/
dig->digest[0] += type;
for (i=1; i < SHS_DIGESTWORDS; ++i) {
dig->digest[i] += ((type+i) ^ dig->digest[i-1]);
}
return;
}
/*
* shs_init_state - initialize a hash state structure for this hash
*
* given:
* state - pointer to the hfunction element to initialize
*/
void
shs_init_state(HASH *state)
{
/*
* initalize state
*/
state->hashtype = SHS_HASH_TYPE;
state->bytes = TRUE;
state->update = shsUpdate;
state->chkpt = shs_chkpt;
state->note = shs_note;
state->type = shs_type;
state->final = shs_final_state;
state->cmp = shs_cmp;
state->print = shs_print;
state->base = SHS_BASE;
state->chunksize = SHS_CHUNKSIZE;
state->unionsize = sizeof(SHS_INFO);
/*
* perform the internal init function
*/
memset((void *)&(state->h_union.h_shs), 0, sizeof(SHS_INFO));
shsInit(state);
return;
}
/*
* shs_final_state - complete hash state and return a ZVALUE
*
* given:
* state the state to complete and convert
*
* returns:
* a ZVALUE representing the state
*/
static ZVALUE
shs_final_state(HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
ZVALUE ret; /* return ZVALUE of completed hash state */
int i;
/*
* malloc and initialize if state is NULL
*/
if (state == NULL) {
state = (HASH *)malloc(sizeof(HASH));
if (state == NULL) {
math_error("cannot malloc HASH");
/*NOTREACHED*/
}
shs_init_state(state);
}
/*
* complete the hash state
*/
shsFinal(state);
/*
* allocate storage for ZVALUE
*/
ret.len = SHS_DIGESTSIZE/sizeof(HALF);
ret.sign = 0;
ret.v = alloc(ret.len);
/*
* load ZVALUE
*/
#if BASEB == 16 && CALC_BYTE_ORDER == LITTLE_ENDIAN
for (i=0; i < ret.len; i+=2) {
ret.v[ret.len-i-1] = ((HALF*)dig->digest)[i+1];
ret.v[ret.len-i-2] = ((HALF*)dig->digest)[i];
}
#else
for (i=0; i < ret.len; ++i) {
ret.v[ret.len-i-1] = ((HALF*)dig->digest)[i];
}
#endif
ztrim(&ret);
/* CID: 6506 */
if (state != NULL)
free(state);
/*
* return ZVALUE
*/
return ret;
}
/*
* shs_cmp - compare two hash states
*
* given:
* a first hash state
* b second hash state
*
* returns:
* TRUE => hash states are different
* FALSE => hash states are the same
*/
static int
shs_cmp(HASH *a, HASH *b)
{
/*
* firewall and quick check
*/
if (a == b) {
/* pointers to the same object */
return FALSE;
}
if (a == NULL || b == NULL) {
/* one is NULL, so they differ */
return TRUE;
}
/*
* compare data-reading modes
*/
if (a->bytes != b->bytes)
return TRUE;
/*
* compare bit counts
*/
if (a->h_union.h_shs.countLo != b->h_union.h_shs.countLo ||
a->h_union.h_shs.countHi != b->h_union.h_shs.countHi) {
/* counts differ */
return TRUE;
}
/*
* compare pending buffers
*/
if (a->h_union.h_shs.datalen != b->h_union.h_shs.datalen) {
/* buffer lengths differ */
return TRUE;
}
if (memcmp((USB8*)a->h_union.h_shs.data,
(USB8*)b->h_union.h_shs.data,
a->h_union.h_shs.datalen) != 0) {
/* buffer contents differ */
return TRUE;
}
/*
* compare digest
*/
return (memcmp((USB8*)(a->h_union.h_shs.digest),
(USB8*)(b->h_union.h_shs.digest),
SHS_DIGESTSIZE) != 0);
}
/*
* shs_print - print a hash state
*
* given:
* state the hash state to print
*/
static void
shs_print(HASH *state)
{
/*
* form the hash value
*/
if (conf->calc_debug & CALCDBG_HASH_STATE) {
char buf[DEBUG_SIZE+1]; /* hash value buffer */
/*
* print numeric debug value
*
* NOTE: This value represents only the hash value as of
* the last full update or finalization. Thus it
* may NOT be the actual hash value.
*/
sprintf(buf,
"sha: 0x%08x%08x%08x%08x%08x data: %d octets",
(int)state->h_union.h_shs.digest[0],
(int)state->h_union.h_shs.digest[1],
(int)state->h_union.h_shs.digest[2],
(int)state->h_union.h_shs.digest[3],
(int)state->h_union.h_shs.digest[4],
(int)state->h_union.h_shs.datalen);
math_str(buf);
} else {
math_str("sha hash state");
}
return;
}