-
Notifications
You must be signed in to change notification settings - Fork 19
/
validate_cifar.py
157 lines (133 loc) · 5.49 KB
/
validate_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
'''Train CIFAR10 with PyTorch.'''
import os
import argparse
import numpy as np
import os.path as osp
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from dq.nets import ResNet18
# Training
def train(epoch, net, trainloader, criterion, optimizer, device):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
accuracy = 0.
correct = 0
total = 0
pbar = tqdm(enumerate(trainloader), total=len(trainloader))
for batch_idx, (inputs, targets) in pbar:
pbar.set_description('Loss: {:.3f} Acc: {:.2%}'.format(
train_loss / (batch_idx + 1), accuracy))
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
accuracy = correct / total
def test(args, best_acc, epoch, net, testloader, criterion, device):
net.eval()
test_loss = 0
accuracy = 0.
correct = 0
total = 0
with torch.no_grad():
pbar = tqdm(enumerate(testloader), total=len(testloader))
for batch_idx, (inputs, targets) in pbar:
pbar.set_description('Loss: {:.3f} Acc: {:.2%}'.format(
test_loss / (batch_idx + 1), accuracy))
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
accuracy = correct / total
# Save checkpoint.
if args.result_path != '' and accuracy > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': accuracy,
'epoch': epoch,
}
if not os.path.isdir(args.result_path):
os.mkdir(args.result_path)
torch.save(state, os.path.join(args.result_path, 'ckpt.pth'))
best_acc = accuracy
return best_acc
def main():
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--data_dir', default='', type=str)
parser.add_argument('--select_indices', default=[], type=str, nargs='+',
help='pre-defined subset indices')
parser.add_argument('--result_path', default='', type=str,
help='dynamic save path, leave empty if not saving')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.data_dir == '':
trainset = torchvision.datasets.CIFAR10(
root='/data/personal/nus-gjy/data', train=True, download=True, transform=transform_train)
else:
trainset = ImageFolder(root=args.data_dir, transform=transform_train)
if len(args.select_indices) > 0:
select_indices = np.array([]).astype(int)
for indices in args.select_indices:
select_indices = np.append(select_indices, np.load(indices))
trainset = torch.utils.data.Subset(trainset, select_indices)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='/data/personal/nus-gjy/data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=128, shuffle=False, num_workers=2)
# Model
print('==> Building model..')
net = ResNet18(channel=3, num_classes=10, im_size=(32, 32))
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
for epoch in range(200):
train(epoch, net, trainloader, criterion, optimizer, device)
best_acc = test(args, best_acc, epoch, net, testloader, criterion, device)
scheduler.step()
if len(args.select_indices) > 0:
index_names = '-'.join([index.split('/')[-1][:-4] for index in args.select_indices])
with open(osp.join(args.result_path, index_names+'.txt'), 'a') as fp:
fp.write(str(epoch) + ' ' + str(best_acc) + '\n')
print(best_acc)
if __name__ == '__main__':
main()