-
Notifications
You must be signed in to change notification settings - Fork 40
/
eval.sh
104 lines (91 loc) · 3 KB
/
eval.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# export CUDA_VISIBLE_DEVICES=2,6,7
export OPENAI_API_KEY=...
num_frames=16
test_ratio=1
# 13b, uses offload thus saving the full model
model_dir=MODELS/pllava-13b
weight_dir=MODELS/pllava-13b
SAVE_DIR=test_results/test_pllava_13b
lora_alpha=4
conv_mode=eval_vcgbench
python -m tasks.eval.vcgbench.pllava_eval_vcgbench \
--pretrained_model_name_or_path ${model_dir} \
--save_path ${SAVE_DIR}/vcgbench \
--num_frames ${num_frames} \
--use_lora \
--lora_alpha ${lora_alpha} \
--weight_dir ${weight_dir} \
--pooling_shape 16-12-12 \
--test_ratio ${test_ratio} \
--conv_mode ${conv_mode}
conv_mode=eval_mvbench
python -m tasks.eval.mvbench.pllava_eval_mvbench \
--pretrained_model_name_or_path ${model_dir} \
--save_path ${SAVE_DIR}/mvbench \
--use_lora \
--lora_alpha ${lora_alpha} \
--num_frames ${num_frames} \
--weight_dir ${weight_dir} \
--pooling_shape 16-12-12 \
--conv_mode ${conv_mode}
onv_mode=eval_videoqabench
python -m tasks.eval.videoqabench.pllava_eval_videoqabench \
--pretrained_model_name_or_path ${model_dir} \
--save_path ${SAVE_DIR}/videoqabench \
--num_frames ${num_frames} \
--use_lora \
--lora_alpha ${lora_alpha} \
--weight_dir ${weight_dir} \
--test_ratio ${test_ratio} \
--conv_mode ${conv_mode}
conv_mode=eval_recaption
python -m tasks.eval.recaption.pllava_recaption \
--pretrained_model_name_or_path ${model_dir} \
--save_path ${SAVE_DIR}/recaption \
--num_frames ${num_frames} \
--use_lora \
--weight_dir ${weight_dir} \
--lora_alpha ${lora_alpha} \
--test_ratio ${test_ratio} \
--conv_mode ${conv_mode}
model_dir=MODELS/pllava-7b
weight_dir=MODELS/pllava-7b
SAVE_DIR=test_results/test_pllava_7b
lora_alpha=4
conv_mode=eval_vcgbench
python -m tasks.eval.vcgbench.pllava_eval_vcgbench \
--pretrained_model_name_or_path ${model_dir} \
--save_path ${SAVE_DIR}/vcgbench \
--num_frames ${num_frames} \
--use_lora \
--lora_alpha ${lora_alpha} \
--weight_dir ${weight_dir} \
--pooling_shape 16-12-12 \
--test_ratio ${test_ratio}
conv_mode=eval_mvbench
python -m tasks.eval.mvbench.pllava_eval_mvbench \
--pretrained_model_name_or_path ${model_dir} \
--save_path ${SAVE_DIR}/mvbench \
--use_lora \
--lora_alpha ${lora_alpha} \
--num_frames ${num_frames} \
--weight_dir ${weight_dir} \
--pooling_shape 16-12-12
onv_mode=eval_videoqabench
python -m tasks.eval.videoqabench.pllava_eval_videoqabench \
--pretrained_model_name_or_path ${model_dir} \
--save_path ${SAVE_DIR}/videoqabench \
--num_frames ${num_frames} \
--use_lora \
--lora_alpha ${lora_alpha} \
--weight_dir ${weight_dir} \
--test_ratio ${test_ratio}
conv_mode=eval_recaption
python -m tasks.eval.recaption.pllava_recaption \
--pretrained_model_name_or_path ${model_dir} \
--save_path ${SAVE_DIR}/recaption \
--num_frames ${num_frames} \
--use_lora \
--lora_alpha ${lora_alpha} \
--weight_dir ${weight_dir} \
--test_ratio ${test_ratio}