-
Notifications
You must be signed in to change notification settings - Fork 8
/
example_tiled_image.py
70 lines (58 loc) · 2.43 KB
/
example_tiled_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# 8/31/22
# https://figurl.org/f?v=gs://figurl/spikesortingview-8&d=sha1://2b44a7d440f0bda1e0e802716688c51d445d54aa&label=Tiled%20image%20example
import numpy as np
import matplotlib.pyplot as plt
import sortingview.views as vv
import kachery_cloud as kcl
def main():
kcl.use_sandbox()
view = example_tiled_image()
url = view.url(label="Tiled image example")
print(url)
def example_tiled_image(*, height=500):
print("Creating Mandelbrot array")
width = 2000
height = 2000
max_iterations = 300
tile_size = 256
x = mandelbrot(height, width, max_iterations=max_iterations, zoom=1.3)
x = x.astype(np.float32) / max_iterations
x[x > 1] = 1
print("Converting to color map uint8")
RdGy = plt.get_cmap("RdGy") # type: ignore
# colorize and convert to uint8
y = np.flip((RdGy(x)[:, :, :3] * 255).astype(np.uint8), axis=0) # type: ignore
print("Creating TiledImage view")
layer1 = vv.TiledImageLayer(label="layer 1", data=y)
y2 = y
y2[:, :, 0] = 0
layer2 = vv.TiledImageLayer(label="layer 2", data=y2)
view = vv.TiledImage(tile_size=tile_size, layers=[layer1, layer2], height=height)
return view
# Thanks: https://figurl.org/f?v=gs://figurl/spikesortingview-7&d=sha1://cf290fc3c9ebcdeff4231f42982c7c6da5a66e3b&label=test_tiled_image
def mandelbrot(height, width, x=-0.5, y=0, zoom: float = 1, max_iterations=100):
# To make navigation easier we calculate these values
x_width = 1.5
y_height = 1.5 * height / width
x_from = x - x_width / zoom
x_to = x + x_width / zoom
y_from = y - y_height / zoom
y_to = y + y_height / zoom
# Here the actual algorithm starts
x = np.linspace(x_from, x_to, width).reshape((1, width))
y = np.linspace(y_from, y_to, height).reshape((height, 1))
c = x + 1j * y
# Initialize z to all zero
z = np.zeros(c.shape, dtype=np.complex128)
# To keep track in which iteration the point diverged
div_time = np.zeros(z.shape, dtype=int)
# To keep track on which points did not converge so far
m = np.full(c.shape, True, dtype=bool)
for i in range(max_iterations):
z[m] = z[m] ** 2 + c[m]
diverged = np.greater(np.abs(z), 2, out=np.full(c.shape, False), where=m) # Find diverging
div_time[diverged] = i # set the value of the diverged iteration number
m[np.abs(z) > 2] = False # to remember which have diverged
return div_time
if __name__ == "__main__":
main()