-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate.tex
232 lines (226 loc) · 9.36 KB
/
template.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
\documentclass[aspectratio=169,notheorems]{corvinusmetropolis}
\newtheorem{theorem}{Theorem}
%\newtheorem{proposition}[theorem]{Proposition}
%\newtheorem{lemma}[theorem]{Lemma}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
%\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{example}[theorem]{Example}
\renewcommand{\myinstlogo}{corvinus_Department_of_Mathematics_logo_cmyk.eps}
%\renewcommand{\myinstlogo}{corvinus_Institute_of_Data_Analytics_and_Information_Systems_cmyk.eps}
%\renewcommand{\myinstlogo}{corvinus_Adatelemzes_es_Informatika_Intezet_cmyk.eps}
%\renewcommand{\myinstlogo}{corvinus_Institute_of_Economics_logo_cmyk.eps}
\title{Quadratic forms}
\subtitle{The Gauss--Jordan elimination completes the square}
\author[Magyarkuti]{Gyula~Magyarkuti\,\orcidlink{0000-0003-4444-0481}}%The name only, if the author does not prefer orcidlink.
\email{magyarkuti@uni-corvinus.hu}
\institute[Corvinus University]
{
Department of Mathematics\\
Corvinus University of Budapest\\
Email: \putemail\\
Download from:
\url{http://web.uni-corvinus.hu/magyarkuti/\jobname .pdf}
}
\date[Week 6. (Fall) Linear Algebra]{\today}
\titlegraphic{\hfill{\includegraphics[width=.2\textwidth]{\myinstlogo}}}
\subject{Linear Algebra}
\keywords{Gauss--Jordan elimination, completing the square}
\newcommand{\lin}{\operatorname{lin}}
\begin{document}
\openingframes{Outline}
\section{Definition of quadratic forms}
\frame{
A quadratic form is a special multi-variable function.
\begin{definition}
Let $A\in\mathbb{R}^{n\times n}$ be a symmetric matrix.
Assume that $a_{k,j}$ denotes the appropriate element of that matrix.
The function $Q:\mathbb{R}^n\to\mathbb{R}$
\[
Q\left( x_{1},x_2,\cdots,x_n \right)=
\sum_{k=1}^n\sum_{j=1}^na_{k,j}x_kx_j
\]
is called $n$ variables quadratic function.
\end{definition}
If $n=1$ then $Q(x_1)=ax_1^2$.\\
If $n=2$ then
$$
Q\left( x_1,x_2 \right)=a_{1,1}x_1^2+a_{1,2}x_1x_2+a_{2,1}x_2x_1+a_{2,2}x_2^2.
$$
Compute the case when $n=3$.
}
\begin{frame}
\begin{theorem}
If $A\in\mathbb{R}^{n\times n}$ is a symmetric matrix then the quadratic form determined by
$A$ is
\[
Q(x)=x\cdot Ax
\]
for every $x\in\mathbb{R}^n.$
\end{theorem}
\begin{example}
Write the symmetric matrix of quadratic form given before.
Write the quadratic form of a symmetric matrix given before.
\end{example}
\begin{theorem}
The quadratic form determined by $A+B$ is the same as the sum of quadratic forms determined by $A$ and $B$ respectively.
Similarly,
the quadratic form determined by $\alpha A$ is the same as the form determined by $A$ multiplied by $\alpha$.
\end{theorem}
\end{frame}
\section{Dyadic decomposition}
\subsection{Dyad and completing the square}
\begin{frame}
The dyad is a special symmetric matrix representing the perfect squares.
\begin{definition}
A symmetric matrix $A\in\mathbb{R}^{n\times n}$ is called \alert{\emph{dyad}},
if there exists a vector
$a\in\mathbb{R}^{n\times 1}$ for which
% \metroset{block=fill}
% \begin{block}{}
\(
A=a\cdot a^T
\)
% \end{block}
% \metroset{block=transparent}
\end{definition}
\begin{theorem}
A quadratic form is a complete square if and only if it is determined by a dyad.
If $A=a\cdot a^T$ where $a=\left( a_1,a_2,\cdots,a_n \right)$, then
% \metroset{block=fill}
% \begin{block}{}
\(
Q\left( x_1,x_2,\cdots,x_n \right)=
\left( a_1x_1+a_2x_2+\cdots+a_nx_n \right)^2,
\)
% \end{block}
% \metroset{block=transparent}
here $Q$ is the quadratic form determined by the dyad $A$.
\end{theorem}
\end{frame}
\subsection{High school method for a few variable only}
\begin{frame}
\frametitle{Decomposition}
\metroset{block=fill}
\begin{theorem}
Every symmetric matrix is a linear combination of dyads. Thus
every quadratic form is a linear combination of complete squares.
\end{theorem}
\metroset{block=transparent}
\begin{example}
Completing the square, rewrite the following quadratic forms as a linear combination of perfect squares.\\
$Q\left( x_1,x_2 \right)=x_1^2+4x_1x_2-5x_2^2,$\\
$Q\left( x_1,x_2 \right)=4x_1^2+6x_1x_2+9x_2^2,$\\
$Q\left( x_1,x_2 \right)=5x_1^2-6x_1x_2+x_2^2,$\\
$Q\left( x_1,x_2,x_3 \right)=5x_1^2-6x_1x_2+x_1x_3,$\\
\end{example}
\end{frame}
\subsection{Professional method}
\begin{frame}
\frametitle{Dyadic decomposition using Gauss--Jordan elimination}
Every $n$-variable quadratic form can be decreased by a multiply of a dyad such that
the remainder quadratic form has one variable less:
\metroset{block=fill}
\begin{theorem}
Consider a symmetric matrix $A\in\mathbb{R}^{n\times n}$.
Assume, that $a_{1,1}\neq 0$ and denote $d=\frac{1}{a_{1,1}}a_1$,
where $a_1$ is the first column of matrix $A$.
Then
\[
R=A-a_{1,1}d\cdot d^T
\]
is a symmetric matrix, where the first row (and column) is the zero vector.
\end{theorem}
\metroset{block=transparent}
\begin{proof}
The sum of symmetric matrices is a symmetric matrix.
If $\delta_k$ denotes the $k$-th coordinate of $d$, then
\(
r_{k,j}=
a_{k,j}-a_{1,1}\delta_{k}\delta_j.
\)
If $k=1$ we obtain $r_{1,j}=a_{1,j}-a_{1,1}\cdot 1\cdot\frac{a_{1,j}}{a_{1,1}}=0$.
\end{proof}
\end{frame}
\begin{frame}
The $k,j$ term of the matrix of the remainder quadratic form is
\metroset{block=fill}
\begin{block}{}
\[
r_{k,j}=
a_{k,j}-a_{1,1}\delta_k\delta_j=
a_{k,j}-a_{1,1}\frac{a_{k,1}}{a_{1,1}}\delta_j=
a_{k,j}-a_{k,1}\delta_j.
\]
\end{block}
If $k>1$ and $j>1$, then the above formula just computes
the new coordinates of the $j$-th column after the first column has entered to the base at the first position.
Thus we proved the following theorem.
\begin{theorem}
Let $A\in\mathbb{R}^{n\times n}$ be a symmetric matrix and assume that $a_{1,1}\neq 0$.
After separating the first complete square, as in the theorem above, the matrix of the remainder quadratic form
is the bottom right $n-1\times n-1$ matrix of the transformation table, when $a_{1,1}$ is the pivot term.
\end{theorem}
\end{frame}
\section{Problems}
\begin{frame}
\frametitle{Problems}
\begin{block}{ Write the following quadratic forms as a linear combination of complete squares.}
\begin{enumerate}
\item
$Q\left( x_2,x_3 \right)=13x_2^2-4x_2x_3+8x_3^2$,
\item
$Q\left( x_1,x_2,x_3 \right)=5x_1^2+6x_2^2+4x_3^2-4x_1x_2-4x_1x_3$,
\item
$Q\left( z_1,z_2,z_3 \right)=2z_1^2+\frac{3}{2}z_3^2+2z_1z_2-4z_1z_3+2z_2z_3$,
\item
$Q\left( x_1,x_2,x_3,x_4 \right)=2x_1^2+2x_2^2+2x_3^2+2x_4^2-4x_1x_2+2x_1x_4+2x_2x_3-4x_3x_4$
\end{enumerate}
\end{block}
\end{frame}
\section{Definiteness of a quadratic form}
\begin{frame}
\frametitle{Definiteness}
Classify a quadratic form with respect to to the range!
\begin{definition}
Let $Q:\mathbb{R}^n\to\mathbb{R}$ be a nonzero quadratic form. It is called
\begin{description}
\item[positive definite,] if $Q\left( x \right)>0$ for every $x\in\mathbb{R}^n,x\neq 0$;
\item[positive semidefinite,] if $ Q\left( x \right)\geq 0$ for every $x\in\mathbb{R}^n$,
but there exists a $z\in\mathbb{R}^n, z\neq 0$ such that $Q\left( z \right)=0$;
\item[negative definite,] if $ Q\left( x \right)<0$ for every $x\in\mathbb{R}^n,x\neq 0;$
\item[negative semidefinite,] if $ Q\left( x \right)\leq 0$ for every $x\in\mathbb{R}^n$,
but there exists a $z\in\mathbb{R}^n, z\neq 0$ such that $Q\left( z \right)=0$;
\item[indefinite,] if there exist two vectors $x,y\in\mathbb{R}^n$ for which
$Q\left( x \right)>0$ but $Q\left( y \right)<0$.
\end{description}
\end{definition}
\end{frame}
\subsection{Summary}
\begin{frame}
\frametitle{Definiteness after completing the square}
It is not hard to decide the definiteness of a quadratic form if it is given with its dyad decomposition.
Let $Q$ be an $n$-variable none-zero quadratic form.\\
If the dyad decomposition
\begin{itemize}
\item includes positive and negative pivot terms then $Q$ is an \alert{\emph{indefinite}} quadratic form.
\end{itemize}
Now assume the dyad decomposition includes exactly $n$ complete squares.
If
\begin{itemize}
\item all pivot terms are positive numbers then $Q$ is \alert{\emph{positive definite}};
\item all pivot terms are negative numbers then $Q$ is \alert{\emph{negative definite}}.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Definiteness after completing the square \ldots}
If the number of dyads is less than $n$,
the same characterization holds true but the quadratic form is semidefinite only:\\
Thus if
\begin{itemize}
\item all pivot terms are positive numbers then $Q$ is \alert{\emph{positive semidefinite}};
\item all pivot terms are negative numbers then $Q$ is \alert{\emph{negative semidefinite}}.
\end{itemize}
\end{frame}
\closingframes{Thank you for your attention!}
\end{document}