-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmc-rmhmc
72 lines (58 loc) · 2.41 KB
/
hmc-rmhmc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#############################################
### RMHMC and HMC
### for generalized extreme value distribuion
#############################################
##################
### Packages
##################
require(MASS) # for gaussian random vector
require(coda) # for mcmc output analysis
######################################################################################################################
### Hamiltonian Monte Carlo
### initial values, size of chain, burn-in, lagged values, discretization size, number of leapfrog steps, metric, data
######################################################################################################################
hmc <- function(theta.current, SS, burn, lag, epsilon, LF, M, y) {
ratio = 0
SS. = (SS + burn) * lag
idx = seq(burn * lag + 1, SS., by = lag)
## preallocate matrix for the chain
D. <- length(theta.current)
mD. <- rep(0, D.)
G. <- M
invG <- solve(G.)
theta <- matrix( , SS., D.)
theta[1, ] <- theta.current
start.time <- Sys.time()
## generating chain
for(i in 2:SS.) {
pn <- mvrnorm(1, mD., G.) ## G.
thetan <- theta[i-1, ]
## current Hamiltonian
H.current <- - ll(thetan, y) + t(pn) %*% invG %*% pn/2 ## invG
## standard leapfrog steps
pn <- pn + epsilon/2 * nll(thetan, y)
for (l in 1:LF) {
thetan <- thetan + epsilon * invG %*% pn ## invG
if (l != LF) pn <- pn + epsilon * nll(thetan, y)
}
pn <- pn + epsilon/2 * nll(thetan, y)
pn <- -pn
## proposed Hamiltonian and log-ratio Hamiltonian
H.prop <- - ll(thetan, y) + t(pn) %*% invG %*% pn/2 ## invG
logratio <- - log(H.prop) + log(H.current)
## applying metropolis rule
if ( (logratio > 0 | logratio > log(runif(1))) & logratio != "NaN" ) {
theta[i, ] <- thetan
ratio <- ratio + 1
}
else theta[i, ] <- theta[i-1, ]
}
print(Sys.time()-start.time)
theta = theta[idx, ]
# write.table(theta, file = "C:/Users/usuario/Desktop/gevModel.txt", row.names = FALSE, col.names = FALSE)
# write.table(theta, file = "/home/maha/Desktop/exGP.txt", row.names = FALSE, col.names = FALSE)
# theta[ ,2] = exp(theta[ ,2])
# colnames(theta) = c('mu', 'sigma', 'xi')
return(list(theta = theta, r = ratio/SS))
}
# A = as.mcmc(B$theta); geweke.diag(A)$z