-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
62 lines (44 loc) · 1.17 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit as st
import pickle
import string
import sklearn
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
nltk.download('stopwords')
nltk.download('punkt')
ps = PorterStemmer()
sw = stopwords.words('english')
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
l = []
for i in text:
if i.isalnum():
l.append(i)
text = l[:]
l.clear()
for i in text:
if i not in sw and i not in string.punctuation:
l.append(i)
text = l[:]
l.clear()
for i in text:
l.append(ps.stem(i))
return " ".join(l)
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
model = pickle.load(open('model.pkl', 'rb'))
st.title('Email/SMS Spam Classifier')
input_sms = st.text_area("Enter the message")
if st.button(":white[Predict]"):
# 1. preprocess
transformed_sms = transform_text(input_sms)
# 2. vectorize
vector_input = tfidf.transform([transformed_sms])
# 3. predict
result = model.predict(vector_input)[0]
# 4. display
if result == 1:
st.header(":red[Spam]")
else:
st.header(":green[Not Spam]")