-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathk_nearest_neighbors.py
79 lines (60 loc) · 2.65 KB
/
k_nearest_neighbors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# K Nearest Neighbours
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the datasets
datasets = pd.read_csv('Social_Network_Ads.csv')
X = datasets.iloc[:, [2,3]].values
Y = datasets.iloc[:, 4].values
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_Train, X_Test, Y_Train, Y_Test = train_test_split(X, Y, test_size = 0.25, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_Train = sc_X.fit_transform(X_Train)
X_Test = sc_X.transform(X_Test)
# Fitting the classifier into the Training set
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_Train, Y_Train)
# Predicting the test set results
Y_Pred = classifier.predict(X_Test)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(Y_Test, Y_Pred)
# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_Set, Y_Set = X_Train, Y_Train
X1, X2 = np.meshgrid(np.arange(start = X_Set[:, 0].min() - 1, stop = X_Set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_Set[:, 1].min() - 1, stop = X_Set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(Y_Set)):
plt.scatter(X_Set[Y_Set == j, 0], X_Set[Y_Set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('K Nearest Neighbours (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
# Visualising the Test set results
from matplotlib.colors import ListedColormap
X_Set, Y_Set = X_Test, Y_Test
X1, X2 = np.meshgrid(np.arange(start = X_Set[:, 0].min() - 1, stop = X_Set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_Set[:, 1].min() - 1, stop = X_Set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(Y_Set)):
plt.scatter(X_Set[Y_Set == j, 0], X_Set[Y_Set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('K Nearest Neighbours (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()