forked from ashokpant/masters-thesis-latex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappendixB.tex
executable file
·394 lines (327 loc) · 13.3 KB
/
appendixB.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
\chapter{Sample Source Codes}
\section{Image Preprocessing Source Code}
\subsection*{Read Image}
\begin{lstlisting}
image=imread('image.jpg');
figure('units','normalized','outerposition',[0 0 1 1]);
imshow(image);
\end{lstlisting}
\subsection*{Colour Normalization}
\begin{lstlisting}
figure('units','normalized','outerposition',[0 0 0.5 0.5]);
subplot(1,2,1),imshow(image_rgb);
title('RGB Image','FontSize',14);
image_gray=rgb2gray(image_rgb);
subplot(1,2,2),imshow(image_gray);
title('Gray Image','FontSize',14);
\end{lstlisting}
\subsection*{Noise Removal}
\begin{lstlisting}
image_denoised=medfilt2(image_gray);
image_denoised=image_denoised(2:end-1,2:end-1); % remove corner pixels
subplot(1,2,1),imshow(image_gray);
title('Gray Image','FontSize',14);
subplot(1,2,2),imshow(image_denoised);
title('Denoised Image','FontSize',14);
\end{lstlisting}
\subsection*{Image Segmentation}
\begin{lstlisting}
threshold=graythresh(image); % Otsu's method for finding global threshold
image_binarized=im2bw(image_denoised,threshold);
subplot(1,2,1),imshow(image_denoised);
title('Denoised Image','FontSize',14);
subplot(1,2,2),imshow(image_binarized);
title('Binarized Image','FontSize',14);
\end{lstlisting}
\subsection*{Image Segmentation}
\begin{lstlisting}
image_inverted=~image_binarized;
subplot(1,2,1),imshow(image_binarized);
title('Binarized Image','FontSize',14);
subplot(1,2,2),imshow(image_inverted);
title('Inverted Image','FontSize',14);
\end{lstlisting}
\subsection*{Universe of Discourse Selection}
\begin{lstlisting}
image_discoursed=universe_of_discourse(image_inverted);
subplot(1,2,1),imshow(image_inverted);
title('Inverted Image','FontSize',14);
subplot(1,2,2),imshow(image_discoursed);
title('Discoursed Image','FontSize',14);
\end{lstlisting}
\subsection*{Image Size Normalization}
\begin{lstlisting}
image_normalized=imresize(image_discoursed,[36 36]);
subplot(1,2,1),imshow(image_discoursed);
title('Discoursed Image','FontSize',14);
subplot(1,2,2),imshow(image_normalized);
title('Size Normalized Image (36x36)','FontSize',14);
\end{lstlisting}
\subsection*{Image Skeletonization}
\begin{lstlisting}
image_skeletonized=bwmorph(image_normalized,'skel','inf');
subplot(1,2,1),imshow(image_normalized);
title('Size Normalized Image (36x36)','FontSize',14);
subplot(1,2,2),imshow(image_skeletonized);
title('Skeletonized Image','FontSize',14);
\end{lstlisting}
\section{Feature Extraction Source Code}
\subsection*{Directional Features}
\begin{lstlisting}
features=[]; % initializing local feature vector
% dividing given image into 3x3 zones
[row,col]=size(image);
zone_height=row/3; %12 pixels (because image size is normalized to 36x36)
zone_width=col/3; %12 pixels (because image size is normalized to 36x36)
zone11=image(1:zone_height,1:zone_width);
zone12=image(1:zone_height,(zone_width+1):2*zone_width);
zone13=image(1:zone_height,(2*zone_width+1):end);
zone21=image((zone_height+1):2*zone_height,1:zone_width);
zone22=image((zone_height+1):2*zone_height,(zone_width+1):2*zone_width);
zone23=image((zone_height+1):2*zone_height,(2*zone_width+1):end);
zone31=image((2*zone_height+1):end,1:zone_width);
zone32=image((2*zone_height+1):end,(zone_width+1):2*zone_width);
zone33=image((2*zone_height+1):end,(2*zone_width+1):end);
% directional features
zone11_features=lineclassifier(zone11);
zone12_features=lineclassifier(zone12);
zone13_features=lineclassifier(zone13);
zone21_features=lineclassifier(zone21);
zone22_features=lineclassifier(zone22);
zone23_features=lineclassifier(zone23);
zone31_features=lineclassifier(zone31);
zone32_features=lineclassifier(zone32);
zone33_features=lineclassifier(zone33);
% Combining features from all nine zones of given image.
%Each row of feature vector contains nine geometric feature elements.
features=[zone11_features;zone12_features;zone13_features;
zone21_features;zone22_features;zone23_features;zone31_features;
zone32_features;zone33_features];
% 'feature' vector is 81 dimensional row vector.
% As there are 9 zones with 9 feature elements each.
% Display zonned images with corresponding feature vectors figure;
subplot(3,3,1),imshow(zone11);title('zone11','FontSize',12);
subplot(3,3,2),imshow(zone12);title('zone12','FontSize',12);
subplot(3,3,3),imshow(zone13);title('zone13','FontSize',12);
subplot(3,3,4),imshow(zone21);title('zone21','FontSize',12);
subplot(3,3,5),imshow(zone22);title('zone22','FontSize',12);
subplot(3,3,6),imshow(zone23);title('zone23','FontSize',12);
subplot(3,3,7),imshow(zone31);title('zone31','FontSize',12);
subplot(3,3,8),imshow(zone32);title('zone32','FontSize',12);
subplot(3,3,9),imshow(zone33);title('zone33','FontSize',12);
\end{lstlisting}
\subsection*{Moment Invariant Features}
\begin{lstlisting}
% Normalized central moments are calculated from each image. These regional
% descriptors form seven elememt feature vector as there are seven moments
% invarients. Normalized Central Moments are independ of transalation,
% rotation, scalling and can be used in pattern identification.
image_size=numel(image); % Number of elemets in given image (36x36=1296)
moments=invmoments(image); % 7 dimensional column vector
\end{lstlisting}
\subsection*{Euler Number Feature}
\begin{lstlisting}
euler_number_feature=bweuler(image);
\end{lstlisting}
\subsection*{Area of Character Skeleton Feature}
\begin{lstlisting}
area=sum(sum(image));
\end{lstlisting}
\subsection*{Centroid Features}
\begin{lstlisting}
[rows,cols] = size(image);
x = ones(rows,1)*[1:cols]; %Matrix with each pixel set to its x coordinate
y = [1:rows]'*ones(1,cols); % " " " " " " " y "
area = sum(sum(image));
meanx = sum(sum(double(image).*x))/area;
meany = sum(sum(double(image).*y))/area;
centroid.x=meanx;
centroid.y=meany;
centroid_features=[centroid.x centroid.y]';
\end{lstlisting}
\subsection*{Eccentricity Features}
\begin{lstlisting}
pixellist=regionprops(image,'pixellist') ;
total_list=[];
for i=1:numel(pixellist)
total_list=[total_list;pixellist(i).PixelList];
end
list=total_list;
if (isempty(list))
MajorAxisLength = 0;
MinorAxisLength = 0;
Eccentricity = 0;
else
% Assign X and Y variables so that we're measuring orientation
% counterclockwise from the horizontal axis.
xbar = centroid.x;
ybar = centroid.y;
x = list(:,1) - xbar;
y = -(list(:,2) - ybar); % This is negative for the
% orientation calculation (measured in the
% counter-clockwise direction).
N = length(x);
% Calculate normalized second central moments for the region. 1/12 is
% the normalized second central moment of a pixel with unit length.
uxx = sum(x.^2)/N + 1/12;
uyy = sum(y.^2)/N + 1/12;
uxy = sum(x.*y)/N;
% Calculate major axis length, minor axis length, and eccentricity.
common = sqrt((uxx - uyy)^2 + 4*uxy^2);
MajorAxisLength = 2*sqrt(2)*sqrt(uxx + uyy + common);
MinorAxisLength = 2*sqrt(2)*sqrt(uxx + uyy - common);
Eccentricity = 2*sqrt((MajorAxisLength/2)^2 -
(MinorAxisLength/2)^2) / MajorAxisLength;
e=Eccentricity;
end
\end{lstlisting}
\section{Training and Testing Source Code}
\subsection*{MLP Training and Testing}
\begin{lstlisting}
% Initialize network parameters and proceeds training and testing
inputs = input_feature_vector;
targets = target_feature_vector;
% Mapping all the input vectors to the range [-1 1]
% [inputs,input_maping_setting]=mapminmax(inputs);
% [targets,target_maping_setting]=mapminmax(targets);
% Create a Feedforward Pattern Recognition Network
% Feedforward network with one input layer, one hidden layer and
% one output layer.
hiddenSizes=25; % Number of neurons in hidden layer
net = feedforwardnet(hiddenSizes);
% Setup Division of Data for Training, Validation, Testing
Q=size(input_feature_vector,2); % Number of image samples
trainRatio = 70/100; % training samples
valRatio = 15/100; % validation samples
testRatio = 15/100; % testing samples
[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);
% Select training and testing samples
% training samples
train_feature_vector=[];
train_target_vector=[];
idx=1;
for i=1:size(trainInd,2)
train_feature_vector(:,idx)=input_feature_vector(:,trainInd(i));
train_target_vector(:,idx)=target_feature_vector(:,trainInd(i));
idx=idx+1;
end
% testing samples
test_feature_vector=[];
test_target_vector=[];
idx=1;
for i=1:size(testInd,2)
test_feature_vector(:,idx)=input_feature_vector(:,testInd(i));
test_target_vector(:,idx)=target_feature_vector(:,testInd(i));
idx=idx+1;
end
% Choose a Network Training Function
net.trainFcn = 'trainlm'; % Levenberg-Marquardt Learning Algorithm
% Function Parameters for 'trainlm'
%
% Show Training Window Feedback showWindow: true
% Show Command Line Feedback showCommandLine: false
% Command Line Frequency show: 20
% Maximum Epochs epochs: 5000
% Maximum Training Time time: Inf
% Performance Goal goal: 0.1
% Minimum Gradient min_grad: 1e-005
% Maximum Validation Checks max_fail: 6
% Mu mu: 0.001
% Mu Decrease Ratio mu_dec: 0.1
% Mu Increase Ratio mu_inc: 10
% Maximum mu mu_max: 10000000000
% Choose Network Weight Initialization Function
net.layers{1}.initFcn= 'initnw'; % Nguyen Widrow weight initialization
net.layers{2}.initFcn= 'initnw';
% Choose Network Transfer Function
net.layers{1}.transferFcn='tansig'; % a = tansig(n) = 2/(1+exp(-2*n))-1
net.layers{2}.transferFcn='tansig';
% Choose a Performance Function
net.performFcn = 'mse'; % Mean squared error
% Choose a network goal (minimum mean square error)
net.trainParam.goal = 1e-003;
% Choose time imterval to show the network status
net.trainParam.show = 20;
% Choose number of Epoches (iterations)
net.trainParam.epochs = 1000;
% Choose value of mu
net.trainParam.mu=0.001;
% memory reduction parameter
net.efficiency.memoryReduction=1;
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotregression', 'plotfit','plotconfusion'};
% Train the Network
[net,tr] = train(net,train_feature_vector,train_target_vector);
% Test the Network
outputs = sim(net,test_feature_vector);
errors = gsubtract(test_target_vector,outputs);
performance = perform(net,test_target_vector,outputs);
% Overall Percentage of correct and incorrect classification
[c,cm,ind,per] = confusion(test_target_vector,outputs);
% c Confusion value = fraction of samples misclassified
% cm S-by-S confusion matrix, where cm(i,j) is the number
% of samples whose target is the ith class that was classified as j
fprintf('Percentage Correct Classification : %f%%\n', 100*(1-c))
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c)
fprintf('Time to Simulate the Network : %0.2f sec \n', tr.time(end))
save mlp_trained_network;
\end{lstlisting}
\subsection*{RBF Training and Testing}
\begin{lstlisting}
% Initialize network parameters and proceeds training and testing
inputs = input_feature_vector;
targets = target_feature_vector;
% Mapping all the input vectors to the range [-1 1]
% [inputs,input_maping_setting]=mapminmax(inputs);
% [targets,target_maping_setting]=mapminmax(targets);
% Setup Division of Data for Training, Validation, Testing
Q=size(input_feature_vector,2); % Number of image samples
trainRatio = 70/100; % training samples
valRatio = 15/100; % validation samples
testRatio = 15/100; % testing samples
[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio);
% Select training and testing samples
% training samples
train_feature_vector=[];
train_target_vector=[];
idx=1;
for i=1:size(trainInd,2)
train_feature_vector(:,idx)=input_feature_vector(:,trainInd(i));
train_target_vector(:,idx)=target_feature_vector(:,trainInd(i));
idx=idx+1;
end
% testing samples
test_feature_vector=[];
test_target_vector=[];
idx=1;
for i=1:size(testInd,2)
test_feature_vector(:,idx)=input_feature_vector(:,testInd(i));
test_target_vector(:,idx)=target_feature_vector(:,testInd(i));
idx=idx+1;
end
% Initialize the Radial Basis Function Parameters
goal=0.01; % default=0.0
spread=2.0; % default =1.0
max_neurons=size(train_target_vector,2);
neuron_increment=25;
% Creating Radial Basis Network
tic;
net=newrb(train_feature_vector,train_target_vector,
goal,spread,max_neurons,neuron_increment);
time=toc;
% -----------Testing the network---------------
outputs=sim(net,test_feature_vector);
errors = gsubtract(test_target_vector,outputs);
% Overall Percentage of correct and incorrect classification
[c,cm,ind,per] = confusion(test_target_vector,outputs);
% c Confusion value = fraction of samples misclassified
% cm S-by-S confusion matrix, where cm(i,j) is the number
% of samples whose target is the ith class that was classified as j
fprintf('Percentage Correct Classification : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);
fprintf('Time to Simulate the Network : %0.2f sec \n', time);
% --------------------------------------------------------
save rbf_trained_network;
\end{lstlisting}