forked from oreilly-japan/deep-learning-from-scratch-3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layers.py
331 lines (272 loc) · 10.8 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import weakref
import numpy as np
import dezero.functions as F
from dezero import cuda
from dezero.core import Parameter
from dezero.utils import pair
# =============================================================================
# Layer (base class)
# =============================================================================
class Layer:
def __init__(self):
self._params = set()
def __setattr__(self, name, value):
if isinstance(value, (Parameter, Layer)):
self._params.add(name)
super().__setattr__(name, value)
def __call__(self, *inputs):
outputs = self.forward(*inputs)
if not isinstance(outputs, tuple):
outputs = (outputs,)
self.inputs = [weakref.ref(x) for x in inputs]
self.outputs = [weakref.ref(y) for y in outputs]
return outputs if len(outputs) > 1 else outputs[0]
def forward(self, inputs):
raise NotImplementedError()
def params(self):
for name in self._params:
obj = self.__dict__[name]
if isinstance(obj, Layer):
yield from obj.params()
else:
yield obj
def cleargrads(self):
for param in self.params():
param.cleargrad()
def to_cpu(self):
for param in self.params():
param.to_cpu()
def to_gpu(self):
for param in self.params():
param.to_gpu()
def _flatten_params(self, params_dict, parent_key=""):
for name in self._params:
obj = self.__dict__[name]
key = parent_key + '/' + name if parent_key else name
if isinstance(obj, Layer):
obj._flatten_params(params_dict, key)
else:
params_dict[key] = obj
def save_weights(self, path):
self.to_cpu()
params_dict = {}
self._flatten_params(params_dict)
array_dict = {key: param.data for key, param in params_dict.items()
if param is not None}
try:
np.savez_compressed(path, **array_dict)
except (Exception, KeyboardInterrupt) as e:
if os.path.exists(path):
os.remove(path)
raise
def load_weights(self, path):
npz = np.load(path)
params_dict = {}
self._flatten_params(params_dict)
for key, param in params_dict.items():
param.data = npz[key]
# =============================================================================
# Linear / Conv2d / Deconv2d
# =============================================================================
class Linear(Layer):
def __init__(self, out_size, nobias=False, dtype=np.float32, in_size=None):
super().__init__()
self.in_size = in_size
self.out_size = out_size
self.dtype = dtype
self.W = Parameter(None, name='W')
if self.in_size is not None:
self._init_W()
if nobias:
self.b = None
else:
self.b = Parameter(np.zeros(out_size, dtype=dtype), name='b')
def _init_W(self, xp=np):
I, O = self.in_size, self.out_size
W_data = xp.random.randn(I, O).astype(self.dtype) * np.sqrt(1 / I)
self.W.data = W_data
def forward(self, x):
if self.W.data is None:
self.in_size = x.shape[1]
xp = cuda.get_array_module(x)
self._init_W(xp)
y = F.linear(x, self.W, self.b)
return y
class Conv2d(Layer):
def __init__(self, out_channels, kernel_size, stride=1,
pad=0, nobias=False, dtype=np.float32, in_channels=None):
"""Two-dimensional convolutional layer.
Args:
out_channels (int): Number of channels of output arrays.
kernel_size (int or (int, int)): Size of filters.
stride (int or (int, int)): Stride of filter applications.
pad (int or (int, int)): Spatial padding width for input arrays.
nobias (bool): If `True`, then this function does not use the bias.
in_channels (int or None): Number of channels of input arrays. If
`None`, parameter initialization will be deferred until the first
forward data pass at which time the size will be determined.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.pad = pad
self.dtype = dtype
self.W = Parameter(None, name='W')
if in_channels is not None:
self._init_W()
if nobias:
self.b = None
else:
self.b = Parameter(np.zeros(out_channels, dtype=dtype), name='b')
def _init_W(self, xp=np):
C, OC = self.in_channels, self.out_channels
KH, KW = pair(self.kernel_size)
scale = np.sqrt(1 / (C * KH * KW))
W_data = xp.random.randn(OC, C, KH, KW).astype(self.dtype) * scale
self.W.data = W_data
def forward(self, x):
if self.W.data is None:
self.in_channels = x.shape[1]
xp = cuda.get_array_module(x)
self._init_W(xp)
y = F.conv2d(x, self.W, self.b, self.stride, self.pad)
return y
class Deconv2d(Layer):
def __init__(self, out_channels, kernel_size, stride=1,
pad=0, nobias=False, dtype=np.float32, in_channels=None):
"""Two-dimensional deconvolutional (transposed convolution)layer.
Args:
out_channels (int): Number of channels of output arrays.
kernel_size (int or (int, int)): Size of filters.
stride (int or (int, int)): Stride of filter applications.
pad (int or (int, int)): Spatial padding width for input arrays.
nobias (bool): If `True`, then this function does not use the bias.
in_channels (int or None): Number of channels of input arrays. If
`None`, parameter initialization will be deferred until the first
forward data pass at which time the size will be determined.
"""
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.pad = pad
self.dtype = dtype
self.W = Parameter(None, name='W')
if in_channels is not None:
self._init_W()
if nobias:
self.b = None
else:
self.b = Parameter(np.zeros(out_channels, dtype=dtype), name='b')
def _init_W(self, xp=np):
C, OC = self.in_channels, self.out_channels
KH, KW = pair(self.kernel_size)
scale = np.sqrt(1 / (C * KH * KW))
W_data = xp.random.randn(C, OC, KH, KW).astype(self.dtype) * scale
self.W.data = W_data
def forward(self, x):
if self.W.data is None:
self.in_channels = x.shape[1]
xp = cuda.get_array_module(x)
self._init_W(xp)
y = F.deconv2d(x, self.W, self.b, self.stride, self.pad)
return y
# =============================================================================
# RNN / LSTM
# =============================================================================
class RNN(Layer):
def __init__(self, hidden_size, in_size=None):
"""An Elman RNN with tanh.
Args:
hidden_size (int): The number of features in the hidden state.
in_size (int): The number of features in the input. If unspecified
or `None`, parameter initialization will be deferred until the
first `__call__(x)` at which time the size will be determined.
"""
super().__init__()
self.x2h = Linear(hidden_size, in_size=in_size)
self.h2h = Linear(hidden_size, in_size=in_size, nobias=True)
self.h = None
def reset_state(self):
self.h = None
def forward(self, x):
if self.h is None:
h_new = F.tanh(self.x2h(x))
else:
h_new = F.tanh(self.x2h(x) + self.h2h(self.h))
self.h = h_new
return h_new
class LSTM(Layer):
def __init__(self, hidden_size, in_size=None):
super().__init__()
H, I = hidden_size, in_size
self.x2f = Linear(H, in_size=I)
self.x2i = Linear(H, in_size=I)
self.x2o = Linear(H, in_size=I)
self.x2u = Linear(H, in_size=I)
self.h2f = Linear(H, in_size=H, nobias=True)
self.h2i = Linear(H, in_size=H, nobias=True)
self.h2o = Linear(H, in_size=H, nobias=True)
self.h2u = Linear(H, in_size=H, nobias=True)
self.reset_state()
def reset_state(self):
self.h = None
self.c = None
def forward(self, x):
if self.h is None:
f = F.sigmoid(self.x2f(x))
i = F.sigmoid(self.x2i(x))
o = F.sigmoid(self.x2o(x))
u = F.tanh(self.x2u(x))
else:
f = F.sigmoid(self.x2f(x) + self.h2f(self.h))
i = F.sigmoid(self.x2i(x) + self.h2i(self.h))
o = F.sigmoid(self.x2o(x) + self.h2o(self.h))
u = F.tanh(self.x2u(x) + self.h2u(self.h))
if self.c is None:
c_new = (i * u)
else:
c_new = (f * self.c) + (i * u)
h_new = o * F.tanh(c_new)
self.h, self.c = h_new, c_new
return h_new
# =============================================================================
# EmbedID / BatchNorm
# =============================================================================
class EmbedID(Layer):
def __init__(self, in_size, out_size):
super().__init__()
self.W = Parameter(np.random.randn(in_size, out_size), name='W')
def __call__(self, x):
y = self.W[x]
return y
class BatchNorm(Layer):
def __init__(self):
super().__init__()
# `.avg_mean` and `.avg_var` are `Parameter` objects, so they will be
# saved to a file (using `save_weights()`).
# But they don't need grads, so they're just used as `ndarray`.
self.avg_mean = Parameter(None, name='avg_mean')
self.avg_var = Parameter(None, name='avg_var')
self.gamma = Parameter(None, name='gamma')
self.beta = Parameter(None, name='beta')
def _init_params(self, x):
xp = cuda.get_array_module(x)
D = x.shape[1]
if self.avg_mean.data is None:
self.avg_mean.data = xp.zeros(D, dtype=x.dtype)
if self.avg_var.data is None:
self.avg_var.data = xp.ones(D, dtype=x.dtype)
if self.gamma.data is None:
self.gamma.data = xp.ones(D, dtype=x.dtype)
if self.beta.data is None:
self.beta.data = xp.zeros(D, dtype=x.dtype)
def __call__(self, x):
if self.avg_mean.data is None:
self._init_params(x)
return F.batch_nrom(x, self.gamma, self.beta, self.avg_mean.data,
self.avg_var.data)