-
Notifications
You must be signed in to change notification settings - Fork 4
/
osr_nega_prompt.py
402 lines (355 loc) · 18.2 KB
/
osr_nega_prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import argparse
import sys
import csv
import datetime
import importlib
import os
import time
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import lr_scheduler
import wandb
import open_clip
import torchvision
from torchvision import datasets, transforms
from clip import clip
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
from core import test_clip, test_nega_clip, train_clip, train_nega_clip
from datasets.classname import *
from datasets.osr_dataloader import (
CIFAR100_OSR,
CIFAR10_OSR,
MNIST_OSR,
SVHN_OSR,
Tiny_ImageNet_OSR,
ImageNet1K_OSR,
ImageNet_OOD
)
from models import scheduler_builder
from models.models import NegaPromptCLIP, OriginalCLIP
from utils import Logger, load_networks, save_networks, get_class_prototypes, train_tsne_plot_with_proto
from tqdm import tqdm
import numpy as np
from scipy import interpolate
from sklearn import metrics
from sklearn.metrics import accuracy_score as Acc
from sklearn.metrics import roc_auc_score as Auc
from sklearn.metrics import roc_curve as Roc
_tokenizer = _Tokenizer()
parser = argparse.ArgumentParser("Training")
# Distribute
parser.add_argument("--local_rank", type=int)
# Dataset
parser.add_argument('--dataset', type=str, default='mnist', help="mnist | svhn | cifar10 | cifar100 | tiny_imagenet | ImageNet_p[1-10]| OOD_ImageNet_[SUN|iNaturalist|places365|dtd")
parser.add_argument('--dataroot', type=str, default='./data')
parser.add_argument('--outf', type=str, default='./log')
parser.add_argument('--out-num', type=int, default=50, help='For CIFAR100')
# add a argument descriping the metadata
# optimization
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--lr', type=float, default=0.1, help="learning rate for model")
parser.add_argument('--gan_lr', type=float, default=0.0002, help="learning rate for gan")
parser.add_argument('--max-epoch', type=int, default=100)
parser.add_argument('--stepsize', type=int, default=30)
parser.add_argument('--temp', type=float, default=1.0, help="temp")
parser.add_argument('--num-centers', type=int, default=1)
# model
parser.add_argument('--weight-pl', type=float, default=0.1, help="weight for center loss")
parser.add_argument('--beta', type=float, default=0.1, help="weight for entropy loss")
parser.add_argument('--model', type=str, default='classifier32')
# misc
parser.add_argument('--nz', type=int, default=100)
parser.add_argument('--ns', type=int, default=1)
parser.add_argument('--eval-freq', type=int, default=1)
parser.add_argument('--print-freq', type=int, default=100)
parser.add_argument('--gpu', type=str, default= '0')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--use-cpu', action='store_true')
parser.add_argument('--save-dir', type=str, default='../log')
parser.add_argument('--loss', type=str, default='Softmax')
parser.add_argument('--eval', action='store_true', help="Eval", default=False)
parser.add_argument('--cs', action='store_true', help="Confusing Sample", default=False)
# clip
parser.add_argument('--clip_backbone', type=str, default='ViT-B/16') #RN50 RN101 RN50x4 RN50x16 RN50x64 ViT-B/32 ViT-B/16 ViT-B/14 ViT-L/14@336px
parser.add_argument('--CSC', type=int, default=0)
parser.add_argument('--LOG', type=int, default=0)
parser.add_argument('--stage', type=int, default=1)
parser.add_argument('--positive_pth', type=str, default='') # xxxx.pth
parser.add_argument('--negative_pth', type=str, default='') # xxxx.pth
#adversarial
parser.add_argument('--NEGA_CTX', type=int, default=1)
parser.add_argument('--distance_weight', type=float, default=0.0001)
parser.add_argument('--negative_weight', type=float, default=1)
parser.add_argument('--random_negative', type=float, default=1e-2)
parser.add_argument('--nega_nega_weight', type=float, default=0.00001)
parser.add_argument('--open_score', type=str, default='msp') #msp posi_nega posi_radius
parser.add_argument('--open_set_method', type=str, default='MSP') # MSP OE Wasserstein Fence
parser.add_argument('--positive_prompt', type=str, default='Positive') # X X X X Positive Cats
parser.add_argument('--negative_prompt', type=str, default='Negative') # X X X X Negative Cats
#Fence
parser.add_argument('--fence_alpha', type=float, default=0.5) #0-1
#Prototype
parser.add_argument('--prototype_weight', type=float, default=0)
parser.add_argument('--ori_dataset', type=str, default='ImageNet_p4') # X X X X Negative Cats
#POMP
parser.add_argument('--POMP', type=int, default=0)
parser.add_argument('--POMP_k', type=int, default=128)
# fewshot
parser.add_argument('--few_shot', type=int, default=0) # 0:all_shot, n: n-shot
def config_options(options):
if options['few_shot'] > 0:
print('use few shot !')
options['outf'] = './log/fewshot/{}'.format(options['few_shot'])
return options
def main_worker(options):
options = config_options(options)
run = wandb.init(project="prompt_clip_openset", dir='.', reinit=True)
run.config.update(options, allow_val_change=True)
# run.define_metric("AUROC", summary="max")
options = run.config
torch.manual_seed(options['seed'])
os.environ['CUDA_VISIBLE_DEVICES'] = options['gpu']
use_gpu = torch.cuda.is_available()
if options['use_cpu']: use_gpu = False
if use_gpu:
print("Currently using GPU: {}".format(options['gpu']))
cudnn.benchmark = True
torch.cuda.manual_seed_all(options['seed'])
else:
print("Currently using CPU")
print('stage: ', options['stage'])
# Dataset
print("{} Preparation".format(options['dataset']))
if 'mnist' in options['dataset']:
Data = MNIST_OSR(known=options['known'], dataroot=options['dataroot'], batch_size=options['batch_size'], img_size=options['img_size'])
trainloader, testloader, outloader = Data.train_loader, Data.test_loader, Data.out_loader
elif 'cifar10' == options['dataset']:
Data = CIFAR10_OSR(known=options['known'], dataroot=options['dataroot'], batch_size=options['batch_size'], img_size=options['img_size'])
trainloader, testloader, outloader = Data.train_loader, Data.test_loader, Data.out_loader
elif 'svhn' in options['dataset']:
Data = SVHN_OSR(known=options['known'], dataroot=options['dataroot'], batch_size=options['batch_size'], img_size=options['img_size'])
trainloader, testloader, outloader = Data.train_loader, Data.test_loader, Data.out_loader
elif 'cifar100' in options['dataset']:
Data = CIFAR10_OSR(known=options['known'], dataroot=options['dataroot'], batch_size=options['batch_size'], img_size=options['img_size'])
trainloader, testloader = Data.train_loader, Data.test_loader
out_Data = CIFAR100_OSR(known=options['unknown'], dataroot=options['dataroot'], batch_size=options['batch_size'], img_size=options['img_size'])
outloader = out_Data.test_loader
elif 'OOD' in options['dataset']:
parts = options['dataset'].split("_") #OOD_ImageNet_SUN
print(options['batch_size'])
Data = ImageNet_OOD(ood_dataset=parts[2], dataroot=options['dataroot'], batch_size=options['batch_size'], img_size=options['img_size'], shot=options['few_shot'])
trainloader, testloader, outloader = Data.train_loader, Data.test_loader, Data.out_loader
elif 'ImageNet' in options['dataset']:
Data = ImageNet1K_OSR(datasplit = options['dataset'], dataroot=options['dataroot'], batch_size=options['batch_size'], img_size=options['img_size'], few_shot=options['few_shot'], cfg = options)
trainloader, testloader, outloader = Data.train_loader, Data.test_loader, Data.out_loader
else:
Data = Tiny_ImageNet_OSR(known=options['known'], dataroot=options['dataroot'], batch_size=options['batch_size'], img_size=options['img_size'])
trainloader, testloader, outloader = Data.train_loader, Data.test_loader, Data.out_loader
options['num_classes'] = Data.num_classes
if options['stage'] == 2 or options['stage'] == 3:
options['max-epoch'] = 15
# Model
if 'ImageNet' in options['dataset']:
classnames = Data.known
options['CTX_INIT'] = 'a photo of a "{}"'
else:
classnames = classname_dic[options['dataset']]["classes"]
known_class = Data.known
# known_class.sort()
# print('known_class', known_class)
classnames = [classnames[i] for i in known_class]
# print('classnames: ', classnames)
options['CTX_INIT'] = classname_dic[options['dataset']]["templates"][0]
test_labels = [classname.replace('_', ' ') for classname in classnames]
# print(test_labels)
options['classnames'] = test_labels
options['N_CTX'] = 16
print("CLIP backbone: {}".format(options['clip_backbone']))
device = "cuda" if use_gpu else "cpu"
clip_model, _, _ = open_clip.create_model_and_transforms('ViT-B-16', pretrained='laion2b_s34b_b88k')
# clip_model, _, _ = open_clip.create_model_and_transforms('ViT-B-16', pretrained='openai')
# clip_model, clip_preprocess = clip.load(options['clip_backbone'], device=device)
# clip_model, _, _ = open_clip.create_model_and_transforms('RN50', pretrained='openai')
# clip_model, _, _ = open_clip.create_model_and_transforms('RN101', pretrained='openai')
# clip_model, _, _ = open_clip.create_model_and_transforms('ViT-B-32', pretrained='openai')
options['clip_implement'] = 'open_clip'
# options['clip_implement'] = 'original_clip'
if(options['clip_implement'] == 'open_clip'):
clip_model.dtype = torch.float32
clip_model.visual.input_resolution = 224
if use_gpu:
clip_model = clip_model.cuda()
# clip_model, clip_preprocess = clip.load(options['clip_backbone'], device=device)
for params in clip_model.parameters():
params.requires_grad_(False)
model = NegaPromptCLIP(options, classnames, clip_model)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
# torch.cuda.set_device(options['local_rank'])
# torch.distributed.init_process_group(backend='nccl')
# model = model.cuda()
# model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
model_path = os.path.join(options['outf'], 'models', options['dataset'])
if not os.path.exists(model_path):
os.makedirs(model_path)
if options['stage'] == 2 or options['stage'] == 3:
model_positive_path = '{}/{}'.format(model_path, 'md.pth')
save_model = torch.load(model_positive_path)
if 'prompt_learner.ctx_positive' in save_model.keys():
model.get_ctx_posi(save_model['prompt_learner.ctx_positive'])
else:
model.get_ctx_posi(save_model['module.prompt_learner.ctx_positive'])
print('Stage 1 model loaded!')
# model.update_nega_features(options)
del save_model
if options['stage'] == 4:
model_positive_path = '{}/{}'.format(model_path, 'md.pth')
save_model = torch.load(model_positive_path)
model.get_ctx_posi(save_model['prompt_learner.ctx_positive'])
print('Stage 1 model loaded!')
del save_model
model_negative_path = '{}/{}/{}'.format(model_path, 'md.pth')
print(model_negative_path)
save_model = torch.load(model_negative_path)
model.get_ctx_nega(save_model['prompt_learner.ctx_negative'])
print('Stage 3 model loaded!')
del save_model
# model.update_nega_features(options)
if options['stage'] == 5:
model_negative_path = '{}/{}/{}'.format(model_path, 'md.pth')
save_model = torch.load(model_negative_path)
model.get_ctx_nega(save_model['prompt_learner.ctx_negative'])
print('Stage 3 model loaded!')
del save_model
optimizer = torch.optim.SGD(model.parameters(), lr=options['lr'])
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(50))
# scheduler = scheduler_builder.ConstantWarmupSchedulr(
# optimizer, scheduler_1, 1, 1e-5)
options.update(
{
'use_gpu': use_gpu
}
)
Loss = importlib.import_module('loss.'+options['loss'])
criterion = getattr(Loss, options['loss'])(**options)
# file_name = '{}_{}_{}_{}_{}'.format(options['clip_backbone'].replace('/',''), options['NEGA_CTX'], options['CSC'], options['open_score'], datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S'))
file_name = 'md.pth'
expr_name = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') + "-" + run.name
start_time = time.time()
best_acc = -1
best_auroc = -1
proto = 0
# calculate the prototype loss
if options['prototype_weight'] != 0:
print('Get prototypes....')
prototypes = get_class_prototypes(model, trainloader, options['num_classes'])
proto = torch.zeros((options['num_classes'], prototypes[0].shape[0])).cuda()
for i in range(options['num_classes']):
proto[i] = prototypes[i]
train_tsne_plot_with_proto(trainloader, testloader, model, proto, options['outf'], expr_name)
results = test_nega_clip(model, criterion, testloader, outloader, epoch=0, **options)
print("Acc (%): {:.3f}\t AUROC (%): {:.3f}\t OSCR (%): {:.3f}\t FPR95 (%): {:.3f}\t AUPR (%): {:.3f}\t".format(
results['ACC'], results['AUROC'], results['OSCR'], results['FPR95'], results['AUPR']
))
if options['stage'] == 4 or options['stage'] == 5:
print('Source dataset : ', options['ori_dataset'])
print('Target dataset : ', options['dataset'])
print('Source log : ', options['negative_pth'])
print('Target log : ', options['positive_pth'])
run.log(results, step = 0)
run.finish()
return results
for epoch in range(options['max_epoch']):
last_loss = 9999999999
print("==> Epoch {}/{}".format(epoch+1, options['max_epoch']))
this_loss = train_nega_clip(model, optimizer, scheduler, trainloader, run, epoch=epoch, proto = proto, **options)
this_loss = round(this_loss, 8)
print('this : ', this_loss)
if this_loss == last_loss:
print('the same')
break
last_loss = this_loss
if options['eval_freq'] > 0 and (epoch+1) % options['eval_freq'] == 0 or (epoch+1) == options['max_epoch']:
print("==> Test", options['loss'])
results = test_nega_clip(model, criterion, testloader, outloader, epoch=0, **options)
print("Acc (%): {:.3f}\t AUROC (%): {:.3f}\t OSCR (%): {:.3f}\t FPR95 (%): {:.3f}\t AUPR (%): {:.3f}\t".format(
results['ACC'], results['AUROC'], results['OSCR'], results['FPR95'], results['AUPR']))
# results = test_clip(model, criterion, testloader, outloader, epoch=0, **options)
# print("Acc (%): {:.3f}\t AUROC (%): {:.3f}\t OSCR (%): {:.3f}\t".format(results['ACC'], results['AUROC'], results['OSCR']))
run.log(results, step = epoch)
if results['ACC'] > best_acc and options['LOG'] and options['stage'] == 1:
best_acc = results['ACC']
save_networks(model, model_path, file_name)
if results['AUROC'] > best_auroc and options['LOG'] and options['stage'] == 3:
best_auroc = results['AUROC']
print("save:", model_path)
save_networks(model, model_path, file_name)
if results['AUROC'] > best_auroc:
best_auroc = results['AUROC']
run.log({'best_auroc': best_auroc}, step = epoch)
if options['stepsize'] > 0: scheduler.step()
# draw the t-sne plot of all the text features
if 'ImageNet' not in options['dataset']:
model.draw_tsne_plot(testloader, outloader, options['outf'], expr_name, epoch)
print('Now running stage_{}, dataset_{}, best_auroc: {}'.format(options['stage'], options['dataset'], best_auroc))
if options['stage'] == 4:
print('Original dataset : ', options['ori_dataset'])
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
run.finish()
return results
if __name__ == '__main__':
args = parser.parse_args()
options = vars(args)
img_size = 224
results = dict()
from split import splits_2020 as splits
if 'ImageNet'in options['dataset']:
options['img_size'] = 224
dir_name = '{}_{}'.format(options['model'], options['loss'])
dir_path = os.path.join(options['outf'], 'results', dir_name)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
file_name = options['dataset'] + '.csv'
res = main_worker(options)
sys.exit(0)
for i in range(len(splits[options['dataset']])):
options['dataroot'] = os.path.join(options['dataroot'], options['dataset'])
known = splits[options['dataset']][len(splits[options['dataset']])-i-1]
if options['dataset'] == 'cifar100':
unknown = splits[options['dataset']+'-'+str(options['out_num'])][len(splits[options['dataset']])-i-1]
elif options['dataset'] == 'tiny_imagenet':
img_size = 224
options['lr'] = 0.001
unknown = list(set(list(range(0, 200))) - set(known))
else:
unknown = list(set(list(range(0, 10))) - set(known))
options.update(
{
'item': i,
'known': known,
'unknown': unknown,
'img_size': img_size
}
)
dir_name = '{}_{}'.format(options['model'], options['loss'])
dir_path = os.path.join(options['outf'], 'results', dir_name)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if options['dataset'] == 'cifar100':
file_name = '{}_{}.csv'.format(options['dataset'], options['out_num'])
else:
file_name = options['dataset'] + '.csv'
res = main_worker(options)
res['unknown'] = unknown
res['known'] = known
results[str(i)] = res
df = pd.DataFrame(results)
df.to_csv(os.path.join(dir_path, file_name))