-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
192 lines (169 loc) · 6.84 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import sys
import errno
import random
import os.path as osp
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
from sklearn.manifold import TSNE
from sklearn.metrics import pairwise_distances
import matplotlib.pyplot as plt
def mkdir_if_missing(directory):
if not osp.exists(directory):
try:
os.makedirs(directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise
class AverageMeter(object):
"""Computes and stores the average and current value.
Code imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Logger(object):
"""
Write console output to external text file.
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/utils/logging.py.
"""
def __init__(self, fpath=None):
self.console = sys.stdout
self.file = None
if fpath is not None:
mkdir_if_missing(os.path.dirname(fpath))
self.file = open(fpath, 'w')
def __del__(self):
self.close()
def __enter__(self):
pass
def __exit__(self, *args):
self.close()
def write(self, msg):
self.console.write(msg)
if self.file is not None:
self.file.write(msg)
def flush(self):
self.console.flush()
if self.file is not None:
self.file.flush()
os.fsync(self.file.fileno())
def close(self):
self.console.close()
if self.file is not None:
self.file.close()
def save_networks(networks, result_dir, name=''):
mkdir_if_missing(result_dir)
weights = networks.state_dict()
filename = '{}/{}.pth'.format(result_dir, name)
torch.save(weights, filename)
def save_GAN(netG, netD, result_dir, name=''):
mkdir_if_missing(osp.join(result_dir, 'checkpoints'))
weights = netG.state_dict()
filename = '{}/{}_G.pth'.format(result_dir, name)
torch.save(weights, filename)
weights = netD.state_dict()
filename = '{}/{}_D.pth'.format(result_dir, name)
torch.save(weights, filename)
def load_networks(networks, result_dir, name='', loss='', criterion=None):
weights = networks.state_dict()
filename = '{}/checkpoints/{}_{}.pth'.format(result_dir, name, loss)
networks.load_state_dict(torch.load(filename))
if criterion:
weights = criterion.state_dict()
filename = '{}/checkpoints/{}_{}_criterion.pth'.format(result_dir, name, loss)
criterion.load_state_dict(torch.load(filename))
return networks, criterion
def get_class_prototypes(model, trainloader, nclass):
all_prototype = {}
feature_num = {}
for batch_idx, (data, labels) in enumerate(trainloader):
data, labels = data.cuda(), labels.cuda()
image_features = model.get_visual_features(data)
for i in range(image_features.shape[0]):
label = int(labels[i].item())
feature = image_features[i,:]
if label not in all_prototype.keys():
all_prototype[label] = feature
feature_num[label] = 1
else:
all_prototype[label] += feature
feature_num[label] += 1
for label in all_prototype:
all_prototype[label] /= feature_num[label]
return all_prototype
def train_tsne_plot_with_proto(trainloader, testloader, model, proto, log_dir, expr_name):
n_class = proto.shape[0]
proto = proto.cuda()
all_image_feature = torch.Tensor().cuda()
all_image_label = torch.Tensor()
for data, labels in trainloader:
data, labels = data.cuda(), labels.cuda()
with torch.set_grad_enabled(False):
image_features = model.get_visual_features(data)
all_image_feature = torch.cat([all_image_feature, image_features], dim=0)
all_image_label = torch.cat([all_image_label, labels.cpu()], dim=0)
for data, labels in testloader:
data, labels = data.cuda(), labels.cuda()
labels = -1 * (labels + 1)
with torch.set_grad_enabled(False):
image_features = model.get_visual_features(data)
all_image_feature = torch.cat([all_image_feature, image_features], dim=0)
all_image_label = torch.cat([all_image_label, labels.cpu()], dim=0)
# total_feature = torch.cat([all_image_feature, proto], dim=0)
# total_label = torch.cat([all_image_label, -1 * torch.Tensor(range(n_class))-1], dim=0)
total_feature = all_image_feature
total_label = all_image_label
X = total_feature.cpu().detach().numpy()
tsne_model = TSNE(metric="precomputed", n_components=2, init="random", perplexity=30)
distance_matrix = pairwise_distances(X, X, metric='cosine', n_jobs=-1)
data = torch.Tensor(tsne_model.fit_transform(distance_matrix))
target = total_label
dataset = TensorDataset(data, target)
loader = DataLoader(dataset, batch_size=256)
plt.figure()
for x, y in loader:
idx_real_image = (y >= 0)
idx_test_image = (y < 0)
# idx_proto_image = (y < 0)
plt.scatter(x[idx_real_image, 0], x[idx_real_image, 1], marker = 'x',c = y[idx_real_image], alpha=0.2,
cmap=plt.cm.get_cmap("rainbow", n_class + 1), label='real')
plt.scatter(x[idx_test_image, 0], x[idx_test_image, 1], marker = 's',c = -1 * y[idx_test_image] - 1, alpha=0.2,
cmap=plt.cm.get_cmap("rainbow", n_class + 1), label='real')
# plt.scatter(x[idx_proto_image, 0], x[idx_proto_image, 1], marker = 'o',c= -1 * y[idx_proto_image] - 1,
# cmap=plt.cm.get_cmap("summer", n_class + 1), label='proto')
dir_path = os.path.join(log_dir, 'tsne', expr_name)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
plt.savefig(os.path.join(dir_path, 'tsne_plot_proto.png'))
plt.close()
def label_transform(input_list, K, N):
"""
Pick K-len(input_list) random numbers excluding the ones in the input list from 0 to N,
so that there is no repetition with the numbers in the input list.
Then, map the numbers in the list and the random numbers to integers between 0 and K,
and return the mapping as a dictionary.
"""
nums = set(input_list)
while len(nums) < K:
new_num = random.randint(0, N)
if new_num not in nums:
nums.add(new_num)
ori_to_modify = {}
modify_to_ori = {}
map_counter = 0
for num in sorted(nums):
ori_to_modify[num] = map_counter
modify_to_ori[map_counter] = num
map_counter += 1
return ori_to_modify, modify_to_ori