-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemp.py
64 lines (56 loc) · 1.44 KB
/
temp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 24 17:20:54 2018
@author: maxxx971
"""
import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import networkx as nx
import GraphToolkit as gt
from Hypergraph import Hypergraph
#P = nx.star_graph(81)
##hyeredge = gt.greedy_hyperedge(P)
##print(hyeredge)
#C = gt.get_H_incidence(P)
##print(C)
#
#r = gt.cond_ratio(graphs[3])
#print(r)
#print(r)
# G = nx.gnp_random_graph(8, 0.7, seed=1000)
# nx.draw_networkx(G)
# plt.show()
# print(gt.cond_ratio(G))
# G = nx.from_numpy_array()
# A = np.asarray(nx.incidence_matrix(G).todense())
#A = np.array([[1,0,0,0,0],
# [1,1,1,0,0],
# [0,1,0,0,0],
# [0,0,1,1,0],
# [0,0,0,1,1],
# [0,0,0,0,1]])
#H = hg.Hypergraph(A)
#print(H.hyperincidence_matrix())
#%%
#G = nx.path_graph(10)
#C = nx.incidence_matrix(G).toarray()
#H = Hypergraph(C, num=4)
#Ch = H.incidence_matrix()
#print(Ch)
#
##%%
#G = nx.complete_graph(5)
#C = nx.incidence_matrix(G).toarray()
#H = Hypergraph(C, [1,2,3])
#Ch = H.incidence_matrix()
#print(Ch)
#globaltemperatures = [14.4, 14.5, 14.8, 15.2, 15.5, 15.8]
#numpirates = [45000, 20000, 15000, 5000, 400, 17]
#
#fig = plt.figure(1, figsize=(8, 6))
#plt.plot(numpirates, globaltemperatures, label="line")
#plt.scatter(numpirates, globaltemperatures)
#plt.show()
import logging
print(logging.getLogger().handlers)