-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMOMLIN_example.m
356 lines (261 loc) · 10.2 KB
/
MOMLIN_example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
% ----------------------------------------
% Author: Md Mamunur Rashid <mamun.stat92@gmail.com>
% Date: SEP 25, 2023
% ----------------------------------------
% close all
clear all
clc
% add data path
addpath('data/');
addpath('SupervisedPCA');
% Turns Warning Off
warning('off','all');
%% attach necessary folders: data, models, others
% ====================
ResultsFile = 'momlin_out';
if ~isdir(ResultsFile)
mkdir(ResultsFile);
end
% =======
global scale ;
scale = "std";
%% Load BRCA triple omics data
% ==== mRNA: X (log2 TPM)
mRNA = importdata('01_rna_tpm.csv'); %
X1 = mRNA.data;
mRNA_name = mRNA.textdata(1,2:end);
% === Mutation Y1
mutation = importdata('02_dna_count.csv'); %
Y1 = mutation.data;
mutation_name = mutation.textdata(1, 2:end);
% === Clinical Y2
clinical = importdata('03_clinical_pheno.csv');
Y2 = clinical.data;
clinical_name = clinical.textdata(1, 2:end);
% hormon
SubtypeL = readtable('00_class_metadata.csv');
hormon_status = table2array(SubtypeL(:,"ERHER2_status"));
ER_HER2_status = string(hormon_status)=='ER- HER2-';
ER_HER2_status = double(ER_HER2_status);
ER_HER2_status(ER_HER2_status == 0) = -1;
Y2 = [Y2, ER_HER2_status];
clinical_name = [clinical_name, {'"ER-HER2-"'}];
% === TiME feature: Y3
TiME = importdata('04_TiME_score.csv');
Y3 = TiME.data;
TiME_name = TiME.textdata(1, 2:end);
% === Pathgway activity: Y4
path = importdata('05_p.acivity.gsva.csv'); %
Y4= path.data;
path_name = path.textdata(1, 2:end);
% === sample label : metadata preparation
SubtypeL = readtable('00_class_metadata.csv');
Slabel = table2array(SubtypeL(:,"RCB_category"));
n_class = length(unique(Slabel));
% Categorical phenotype (One-hat encoding: T1,..T4)
Class_b = [string(Slabel)=='pCR' string(Slabel)=='RCB-I'...
string(Slabel)=='RCB-II' string(Slabel)=='RCB-III'];
% 1: pCR; 2: RCB-I; 3: RCB-II; 4: RCB-III;
clasID = double(Class_b(:,1) + 2*Class_b(:,2) + 3*Class_b(:,3) + 4*Class_b(:,4));
Z = double(Class_b);
% assigned datasets
XX1 = X1; % rna
YY1 = Y1; % mutation
YY2 = Y2; % clinical
YY3 = Y3; % TiME
YY4 = Y4; % Pathways
% Variable Feature selection in high dim data
X1raw = XX1; %
Y3raw = YY3; %
Y4raw = YY4; %
% calculate median absolute deviation (mad) of raw data
X1var = flipud(sortrows([mad(X1raw,1,1)',(1:size(X1raw,2))']));
Y3var = flipud(sortrows([mad(Y3raw,1,1)',(1:size(Y3raw,2))']));
Y4var = flipud(sortrows([mad(Y4raw,1,1)',(1:size(Y4raw,2))']));
% quantile(Y4var(:,1),.25)
X1indices2keep = floor(0.1*size(X1raw,2)); % Find top 40% of highly variant mRNAs
Y3indices2keep = floor(1.0*size(Y3raw,2)); %
Y4indices2keep = floor(1.0*size(Y4raw,2)); %
XX1 = X1raw(:,sortrows(X1var(1:X1indices2keep,2)));
YY3 = Y3raw(:, sortrows(Y3var(1:Y3indices2keep,2)));
YY4 = Y4raw(:, sortrows(Y4var(1:Y4indices2keep,2)));
mRNA_name = mRNA_name(sortrows(X1var(1:X1indices2keep,2)));
TiME_name = TiME_name(sortrows(Y3var(1:Y3indices2keep,2)));
path_name = path_name(sortrows(Y4var(1:Y4indices2keep,2)));
% Initiation
[n, p] = size(XX1); % n, p
[~, q1] = size(YY1); % q
[~, q2] = size(YY2); % z
[~, q3] = size(YY3);
[~, q4] = size(YY4);
%% Set tuned parameters
% weight :U for mRNA
opts.lambda_u = 0.80; % L1-norm for X
% weight :v1_3 for DNA, Clinic, TiME, Path
opts.lambda_v1 = 0.60; % L1-norm for Y1
opts.lambda_v2 = 0.40; % L1-norm for Y2
opts.lambda_v3 = 0.60; % L1-norm for Y3
opts.lambda_v4 = 0.70; % L1-norm for Y4
% Adjust co-expressed module
opts.beta = 0.5; % GN-norm for X dependency (3)
% #diagnosis class
trainData.n_class = n_class;
testData.n_class = n_class;
%% ::::::::::::::: Run Main Algorithm M2SCCA ::::::::::::::::::::::::::
% initiations
nModels = 5; % Number of MOMLIN modules to run
k_fold = 3; % Cross-validation number for MOMLIN
dOut_AUCs = {};
for ii = 1:1:nModels
% Kfold cross validation based on 70% train Data
indices = cvpartition(clasID,'KFold',k_fold,'Stratify',true);
for k = 1 : indices.NumTestSets
fprintf('[conduct fold %d ', k);
% Split training data and test data
idx_test = indices.test(k);
idx_train = ~idx_test;
% save reapative random indices for further use
rCVF_train(:,k,ii) = idx_train;
rCVF_test(:,k,ii) = idx_test;
trainData.n_class = n_class;
testData.n_class = n_class;
% training sets
trainData.X{1,1} = XX1(idx_train, :); % mRNA
trainData.X{2,1} = XX1(idx_train, :); %
trainData.X{3,1} = XX1(idx_train, :); %
trainData.X{4,1} = XX1(idx_train, :); %
trainData.Y{1,1} = YY1(idx_train, :); % mutation
trainData.Y{2,1} = YY2(idx_train, :); % clinic
trainData.Y{3,1} = YY3(idx_train, :); % TiME
trainData.Y{4,1} = YY4(idx_train, :); % pathways
trainData.Z = Z(idx_train, :);
% testing sets
testData.X{1,1} = XX1(idx_test, :); % mRNA
testData.X{2,1} = XX1(idx_test, :);
testData.X{3,1} = XX1(idx_test, :);
testData.X{4,1} = XX1(idx_test, :);
testData.Y{1,1} = YY1(idx_test, :); % mutation
testData.Y{2,1} = YY2(idx_test, :); % clinic
testData.Y{3,1} = YY3(idx_test, :); % TiME
testData.Y{4,1} = YY4(idx_test, :); % pathways
testData.Z = Z(idx_test, :);
%% Train model
tic;
[U(:,:,k), V] = momlin_main(trainData, opts);
V1(:,:,k) = V{1};
V2(:,:,k) = V{2};
V3(:,:,k) = V{3};
V4(:,:,k) = V{4};
time(k, 1) = toc;
%% Calculate canonical correlation coefficients (CCCs)
CCCs_train = calcCCC_2(trainData, U(:, :, k), V);
CCCs_train1(:,:,k) = CCCs_train{1}; % RNA-Mutatiion
CCCs_train2(:,:,k) = CCCs_train{2}; % RNA-clinical
CCCs_train3(:,:,k) = CCCs_train{3}; % RNA-TiME
CCCs_train4(:,:,k) = CCCs_train{4}; % RNA-path
CCCs_test = calcCCC_2(testData, U(:, :, k), V);
CCCs_test1(:,:,k) = CCCs_test{1}; % mRNA-mutation
CCCs_test2(:,:,k) = CCCs_test{2}; % mRNA-clinical
CCCs_test3(:,:,k) = CCCs_test{3}; % mRNA-molecule
CCCs_test4(:,:,k) = CCCs_test{4}; % mRNA-molecule
fprintf('(%.2fs)]\n', time(k));
end
U_mean_i(:,:,ii) = mean(U,3);
V1_mean_i(:,:,ii) = mean(V1,3);
V2_mean_i(:,:,ii) = mean(V2,3);
V3_mean_i(:,:,ii) = mean(V3,3);
V4_mean_i(:,:,ii) = mean(V4,3);
mean_CCCs_train_i(1,:,ii) = mean(CCCs_train1,3);
mean_CCCs_train_i(2,:,ii) = mean(CCCs_train2,3);
mean_CCCs_train_i(3,:,ii) = mean(CCCs_train3,3);
mean_CCCs_train_i(4,:,ii) = mean(CCCs_train4,3);
mean_CCCs_test_i(1,:,ii) = mean(CCCs_test1,3);
mean_CCCs_test_i(2,:,ii) = mean(CCCs_test2,3);
mean_CCCs_test_i(3,:,ii) = mean(CCCs_test3,3);
mean_CCCs_test_i(4,:,ii) = mean(CCCs_test4,3);
end
% ------ Calculate Canonical Weights -----------
U_mean = sum(U_mean_i, 3)./sqrt(sum(sum(U_mean_i, 3).^2,1)); % mRNA
% ---------
V1_mean = sum(V1_mean_i, 3)./sqrt(sum(sum(V1_mean_i, 3).^2,1)); % Dana
% ---------
V2_mean = sum(V2_mean_i, 3)./sqrt(sum(sum(V2_mean_i, 3).^2,1)); % Clinical
% ---------
V3_mean = sum(V3_mean_i, 3)./sqrt(sum(sum(V3_mean_i, 3).^2,1)); % TiME
% ---------
V4_mean = sum(V4_mean_i, 3)./sqrt(sum(sum(V4_mean_i, 3).^2,1)); % Pathways
% Correlation
% training
CCCs_mean_train = mean(mean_CCCs_train_i,3); % mRNA-DNA
% testing
CCCs_mean_test = mean(mean_CCCs_test_i,3); % mRNA-DNA
% save MOMLIN loadings
% save(strcat(ResultsFile,"/result_momlin.mat"))
%% canonical weight heatmap vis.
figure(); colormap(jet);
caxis_range = 0.50;
subplot(5, 1, 1); imagesc(U_mean', [-caxis_range caxis_range]);
colorbar('Ticks', [-caxis_range 0 caxis_range]);
% Get axis handle
ax = gca;
% Set where ticks will be
ax.YTick = 1:n_class;
% Set TickLabels;
ax.YTickLabel = {'pCR','RCB-I','RCB-II','RCB-III'};
xlabel('mRNA', 'Color', 'k', 'FontSize',14);
ylabel('Response class', 'Color', 'k', 'FontSize',14);
yL.FontSize = 20; xL.FontSize = 20;
%title('Proteome canonical weights','Color','k', 'FontSize',20)
%caxis_range = 0.9;
colormap(jet);
subplot(5, 1, 2); imagesc(V1_mean', [-caxis_range caxis_range]);
colorbar('Ticks', [-caxis_range 0 caxis_range]);
% Get axis handle
ax = gca;
% Set where ticks will be
ax.YTick = 1:n_class;
% Set TickLabels;
ax.YTickLabel = {'pCR','RCB-I','RCB-II','RCB-III'};
xlabel('DNA', 'Color', 'k', 'FontSize',14);
ylabel('Response class', 'Color', 'k', 'FontSize',14);
yL.FontSize = 20; xL.FontSize = 20;
%title('Metabolome canonical weights','Color','k', 'FontSize',20)
%caxis_range = 0.9;
colormap(jet);
subplot(5, 1, 3); imagesc(V2_mean', [-caxis_range caxis_range]);
colorbar('Ticks', [-caxis_range 0 caxis_range]);
% Get axis handle
ax = gca;
% Set where ticks will be
ax.YTick = 1:n_class;
% Set TickLabels;
ax.YTickLabel = {'pCR','RCB-I','RCB-II','RCB-III'};
xlabel('Clinical', 'Color', 'k', 'FontSize',14);
ylabel('Response class', 'Color', 'k', 'FontSize',14);
yL.FontSize = 20; xL.FontSize = 20;
%caxis_range = 0.9;
colormap(jet);
subplot(5, 1, 4); imagesc(V3_mean', [-caxis_range caxis_range]);
colorbar('Ticks', [-caxis_range 0 caxis_range]);
% Get axis handle
ax = gca;
% Set where ticks will be
ax.YTick = 1:n_class;
% Set TickLabels;
ax.YTickLabel = {'pCR','RCB-I','RCB-II','RCB-III'};
xlabel('TiME', 'Color', 'k', 'FontSize',14);
ylabel('Response class', 'Color', 'k', 'FontSize',14);
yL.FontSize = 20; xL.FontSize = 20;
%caxis_range = 0.9;
colormap(jet);
subplot(5, 1, 5); imagesc(V4_mean', [-caxis_range caxis_range]);
colorbar('Ticks', [-caxis_range 0 caxis_range]);
% Get axis handle
ax = gca;
% Set where ticks will be
ax.YTick = 1:n_class;
% Set TickLabels;
ax.YTickLabel = {'pCR','RCB-I','RCB-II','RCB-III'};
xlabel('Pathways', 'Color', 'k', 'FontSize',14);
ylabel('Response class', 'Color', 'k', 'FontSize',14);
yL.FontSize = 20; xL.FontSize = 20;