-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathensemble.py
40 lines (34 loc) · 1.16 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import matplotlib.pyplot as plt
from scipy import stats
import SimpleITK as sitk
from pathlib import Path
import numpy as np
gt_dir = Path("data/project_data/Test_Set/")
datadir = Path("nnunet_infer")
sus = lambda x: "_preprocessed_histmatched.nii.gz" if "pre" in x else ".nii.gz"
dices = []
hausdorffs = []
volumetric_diff = []
test_set = ["02", "10", "15"]
val_set = ["13", "11", "17", "12", "14"]
for num in test_set:
op_images_name = [
i / f"IBSR_{num}{sus(i.stem)}"
for i in datadir.iterdir()
if ".DS_Store" not in str(i)
]
gt_file = gt_dir / f"IBSR_{num}" / f"IBSR_{num}.nii.gz"
gt_image = sitk.ReadImage(str(gt_file))
op_arrs = np.array(
[sitk.GetArrayFromImage(sitk.ReadImage(str(i))) for i in op_images_name]
)
# ensemble step
output_array = np.expand_dims(stats.mode(op_arrs, axis=0).mode.squeeze(), axis=3)
output_image = sitk.GetImageFromArray(output_array)
output_image.CopyInformation(gt_image)
# save the ensemble image
sitk.WriteImage(
output_image, str(gt_dir / f"IBSR_{num}" / f"IBSR_{num}_seg_nnunet_pred.nii.gz")
)
plt.imshow(output_array[145, :, :, 0])
plt.show()