-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathdemo_seen.py
248 lines (201 loc) · 8.86 KB
/
demo_seen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import time
import numpy as np
import models
import datasets
import math
from BatchAverage import BatchCriterion
from utils import *
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='PyTorch Seen Testing Category Training')
parser.add_argument('--dataset', default='cifar',
help='dataset name: "cifar": cifar-10 datasetor "stl": stl-10 dataset]')
parser.add_argument('--lr', default=0.03, type=float, help='learning rate')
parser.add_argument('--resume', '-r', default='', type=str, help='resume from checkpoint')
parser.add_argument('--log_dir', default='log/', type=str,
help='log save path')
parser.add_argument('--model_dir', default='checkpoint/', type=str,
help='model save path')
parser.add_argument('--test_epoch', default=1, type=int,
metavar='E', help='test every N epochs')
parser.add_argument('--test-only', action='store_true', help='test only')
parser.add_argument('--low-dim', default=128, type=int,
metavar='D', help='feature dimension')
parser.add_argument('--batch-t', default=0.1, type=float,
metavar='T', help='temperature parameter for softmax')
parser.add_argument('--batch-m', default=1, type=float,
metavar='N', help='m for negative sum')
parser.add_argument('--batch-size', default=128, type=int,
metavar='B', help='training batch size')
parser.add_argument('--gpu', default='0,1,2,3', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
dataset = args.dataset
if dataset =='cifar':
img_size = 32
pool_len = 4
elif dataset == 'stl':
img_size = 96
pool_len = 7
log_dir = args.log_dir + dataset + '_log/'
test_epoch = args.test_epoch
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
suffix = dataset + '_batch_0nn_{}'.format(args.batch_size)
suffix = suffix + '_temp_{}_km_{}_alr'.format(args.batch_t, args.batch_m)
if len(args.resume)>0:
suffix = suffix + '_r'
# log the output
test_log_file = open(log_dir + suffix + '.txt', "w")
vis_log_dir = log_dir + suffix + '/'
if not os.path.isdir(vis_log_dir):
os.makedirs(vis_log_dir)
writer = SummaryWriter(vis_log_dir)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data Preparation
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomResizedCrop(size=img_size, scale=(0.2,1.)),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomGrayscale(p=0.2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if dataset =='cifar':
# cifar-10 dataset
trainset = datasets.CIFAR10Instance(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=args.batch_size, shuffle=True, num_workers=4,drop_last =True)
testset = datasets.CIFAR10Instance(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset,
batch_size=100, shuffle=False, num_workers=4)
elif dataset == 'stl':
# stl-10 dataset
trainset = datasets.STL10Instance(root='./data', split='train+unlabeled', download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=args.batch_size, shuffle=True, num_workers=4,drop_last =True)
valset = datasets.STL10Instance(root='./data', split='train', download=True, transform=transform_test)
valloader = torch.utils.data.DataLoader(valset,
batch_size=100, shuffle=False, num_workers=4,drop_last =True)
nvdata = valset.__len__()
testset = datasets.STL10Instance(root='./data', split='test', download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset,
batch_size=100, shuffle=False, num_workers=4)
ndata = trainset.__len__()
print('==> Building model..')
net = models.__dict__['ResNet18'](pool_len = pool_len, low_dim=args.low_dim)
# define leminiscate: inner product within each mini-batch (Ours)
if device == 'cuda':
net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
# define loss function: inner product loss within each mini-batch
criterion = BatchCriterion(args.batch_m, args.batch_t, args.batch_size)
net.to(device)
criterion.to(device)
if args.test_only or len(args.resume)>0:
# Load checkpoint.
model_path = args.model_dir + args.resume
print('==> Resuming from checkpoint..')
assert os.path.isdir(args.model_dir), 'Error: no checkpoint directory found!'
checkpoint = torch.load(model_path)
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
if args.test_only:
if dataset == 'cifar':
acc = kNN(epoch, net, trainloader, testloader, 200, args.batch_t, ndata, low_dim = args.low_dim)
elif dataset == 'stl':
acc = kNN(epoch, net, valloader, testloader, 200, args.batch_t, nvdata, low_dim = args.low_dim)
sys.exit(0)
# define optimizer
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed at 120, 160 and 200"""
lr = args.lr
if epoch >= 120 and epoch < 160:
lr = args.lr * 0.1
elif epoch >= 160 and epoch <200:
lr = args.lr * 0.05
elif epoch >= 200:
lr = args.lr * 0.01
for param_group in optimizer.param_groups:
param_group['lr'] = lr
writer.add_scalar('lr', lr, epoch)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
adjust_learning_rate(optimizer, epoch)
train_loss = AverageMeter()
data_time = AverageMeter()
batch_time = AverageMeter()
# switch to train mode
net.train()
end = time.time()
for batch_idx, (inputs1, inputs2, _, indexes) in enumerate(trainloader):
data_time.update(time.time() - end)
inputs1, inputs2, indexes = inputs1.to(device), inputs2.to(device), indexes.to(device)
inputs = torch.cat((inputs1,inputs2), 0)
optimizer.zero_grad()
features = net(inputs)
loss = criterion(features, indexes)
loss.backward()
optimizer.step()
train_loss.update(loss.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx%10 ==0:
print('Epoch: [{}][{}/{}] '
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data: {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss: {train_loss.val:.4f} ({train_loss.avg:.4f})'.format(
epoch, batch_idx, len(trainloader), batch_time=batch_time, data_time=data_time, train_loss=train_loss))
# add log
writer.add_scalar('loss', train_loss.avg, epoch)
for epoch in range(start_epoch, start_epoch+301):
# training
train(epoch)
# testing every test_epoch
if epoch%test_epoch ==0:
net.eval()
print('----------Evaluation---------')
start = time.time()
if dataset == 'cifar':
acc = kNN(epoch, net, trainloader, testloader, 200, args.batch_t, ndata, low_dim = args.low_dim)
elif dataset == 'stl':
acc = kNN(epoch, net, valloader, testloader, 200, args.batch_t, nvdata, low_dim = args.low_dim)
print("Evaluation Time: '{}'s".format(time.time()-start))
writer.add_scalar('nn_acc', acc, epoch)
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir(args.model_dir):
os.mkdir(args.model_dir)
torch.save(state, args.model_dir + suffix + '_best.t')
best_acc = acc
print('accuracy: {}% \t (best acc: {}%)'.format(acc,best_acc))
print('[Epoch]: {}'.format(epoch), file = test_log_file)
print('accuracy: {}% \t (best acc: {}%)'.format(acc,best_acc), file = test_log_file)
test_log_file.flush()