-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_utils.py
230 lines (214 loc) · 9.36 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
import torch.nn as nn
import torchvision
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
from torchvision.transforms import *
import os
import time
import gc
import shutil
import h5py
from dfw.dfw import DFW
from dfw.dfw.losses import set_smoothing_enabled
from dfw.dfw.losses import MultiClassHingeLoss
from dfw.experiments.models.densenet import DenseNet3
from dfw.experiments.models.wide_resnet import WideResNet
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def save_checkpoint(state, is_best, epoch, name):
filename = 'checkpoints/v1_ckpt_'+name
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename+'_best')
def test_model(device, model_class, ckpt, test_data):
model = model_class().cuda()
print(model)
checkpoint = torch.load('checkpoints/'+ckpt)
model.load_state_dict(checkpoint['model_state_dict'])
test_loader = DataLoader(test_data, 64, num_workers=2, pin_memory=True)
sm = nn.Softmax(dim=1)
total_correct = 0
total_images = 0
model.eval()
for i, (inputs, labels) in enumerate(test_loader):
inputs = inputs.to(device)
labels = labels.to(device)
with torch.set_grad_enabled(False):
outputs = model(inputs)
sm_outputs = sm(outputs)
outputs = torch.argmax(outputs, dim=1)
total_correct += (outputs == labels).sum().item()
total_images += len(labels)
torch.cuda.empty_cache()
gc.collect()
model_accuracy = total_correct / total_images * 100
return model_accuracy
def accuracy(out, targets, topk=1):
if topk == 1:
_, pred = torch.max(out, 1)
acc = torch.mean(torch.eq(pred, targets).float())
else:
_, pred = out.topk(topk, 1, True, True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1).expand_as(pred))
acc = correct[:topk].view(-1).float().sum(0) / out.size(0)
return 100. * acc
def plot_train(losses, errors, accs):
plt.plot(range(len(losses)), losses, label = "Train loss", color='blue')
plt.plot(range(len(errors)), errors, label = "Val loss", color='red')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Train vs Val loss')
plt.legend()
plt.show()
plt.plot(range(len(accs)), accs, label = "Val accuracy", color='green')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.title('Train vs Accuracy')
plt.legend()
plt.show()
class Net_Trainer(object):
def __init__(self, device, model_class, ckpt_name, trainset, valset, n_classes=10, depth=40, loss='ce', load_ckpt=None, epochs=20, batch_size=64, lr=0.001, optm='sgd', mom=0.0, weight_decay=0, smooth=False, lr_decay=None, step=None):
self.device = device
self.lr = lr
self.momentum = mom
self.lr_decay = lr_decay
self.weight_decay = weight_decay
self.batch_size = batch_size
self.start_epoch = 0
self.epochs = epochs
self.workers = 2
self.seed = int(time.time())
self.print_freq = 1
self.checkpoint_path = load_ckpt
self.best_error = 1e8
self.best_epoch = 0
self.ckpt_name = ckpt_name
self.loss_history = []
self.error_history = []
self.accuracies = []
self.log_dict = {}
self.trainset = trainset
self.valset = valset
self.smooth_svm = smooth
self.step = step
torch.cuda.manual_seed(self.seed)
print(self.device,torch.cuda.get_device_name(0))
if model_class == 'wrn':
self.model = WideResNet(depth, n_classes, widen_factor=4).cuda()
elif model_class == 'dn':
self.model = DenseNet3(depth, n_classes, growth_rate=40, bottleneck=True).cuda()
else:
raise ValueError
if loss == 'svm':
self.criterion = MultiClassHingeLoss().cuda()
elif loss == 'ce':
self.criterion = nn.CrossEntropyLoss().cuda()
else:
raise ValueError
if optm == 'sgd':
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay, momentum=self.momentum, nesterov=bool(self.momentum))
elif optm == "adam":
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
elif optm == "adagrad":
self.optimizer = torch.optim.Adagrad(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
elif optm == "amsgrad":
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay, amsgrad=True)
elif optm == 'dfw':
self.optimizer = DFW(self.model.parameters(), eta=self.lr, momentum=self.momentum, weight_decay=self.weight_decay)
elif optm == 'bpgrad':
self.optimizer = BPGrad(self.model.parameters(), eta=self.lr, momentum=self.momentum, weight_decay=self.weight_decay)
else:
raise ValueError(optm)
### Load saved checkpoint
if self.checkpoint_path:
checkpoint = torch.load('checkpoints/'+self.checkpoint_path)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.start_epoch = checkpoint['epoch']+1
loss = checkpoint['loss']
self.best_error = checkpoint['best_error']
self.best_epoch = checkpoint['best_epoch']
self.loss_history = checkpoint['loss_hist']
self.error_history = checkpoint['err_hist']
self.accuracies = checkpoint['acc_hist']
def train(self):
for epoch in range(self.start_epoch, self.epochs):
start = time.time()
loss = self.train_epoch(epoch)
if epoch%1 != 0:
print('Epoch:'+str(epoch),' Loss:'+str(round(loss,3)))
continue
error, acc = self.validate(epoch)
end = time.time() - start
if error < self.best_error:
is_best = True
self.best_epoch = epoch
else:
is_best = False
self.loss_history.append(loss)
self.error_history.append(error)
self.accuracies.append(acc)
self.best_error = min(error, self.best_error)
print('Epoch:'+str(epoch),' Loss:'+str(round(loss,3)),' Val loss:'+str(round(error,3)),' Accuracy:'+str(round(acc.item(),3)),' Best val loss:'+str(round(self.best_error,3)),' Time taken:'+str(round(end,3)))
save_checkpoint({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'loss': loss,
'best_error': self.best_error,
'best_epoch': self.best_epoch,
'loss_hist': self.loss_history,
'err_hist': self.error_history,
'acc_hist': self.accuracies
}, is_best, epoch, self.ckpt_name)
if self.step and (epoch + 1) in self.step:
self.decay_learning_rate()
return self.best_epoch, self.loss_history, self.error_history, self.accuracies
def train_epoch(self, cur_epoch):
train_loader = DataLoader(self.trainset, self.batch_size, shuffle=True, num_workers=self.workers, pin_memory=True)
self.model.train()
losses = 0
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(self.device)
labels = labels.to(self.device)
with torch.set_grad_enabled(True):
outputs = self.model(inputs)
with set_smoothing_enabled(self.smooth_svm):
loss = self.criterion(outputs, labels)
losses += loss.detach().cpu().item()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step(lambda: float(loss))
torch.cuda.empty_cache()
gc.collect()
return losses/len(train_loader)
def validate(self, cur_epoch):
val_loader = DataLoader(self.valset, self.batch_size, num_workers=self.workers, pin_memory=True)
self.model.eval()
errors = 0
acc = 0
for i, (inputs, labels) in enumerate(val_loader):
inputs = inputs.to(self.device)
labels = labels.to(self.device)
with torch.set_grad_enabled(False):
outputs = self.model(inputs)
error = self.criterion(outputs, labels)
errors += error.detach().cpu().item()
acc += accuracy(outputs, labels)
torch.cuda.empty_cache()
gc.collect()
return errors/len(val_loader), acc/len(val_loader)
def decay_learning_rate(self):
if isinstance(self.optimizer, torch.optim.SGD):
for param_group in self.optimizer.param_groups:
param_group['lr'] *= self.lr_decay
self.lr = self.optimizer.param_groups[0]['lr']
else:
raise ValueError
def regularization(self):
reg = 0.5 * self.weight_decay * sum([p.data.norm() ** 2 for p in self.model.parameters()]) if self.weight_decay else 0
return reg