-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuartoDoc.qmd
443 lines (381 loc) · 17.3 KB
/
QuartoDoc.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
```{r setup, include=FALSE}
library(here)
library(ptaxsim)
library(latex2exp)
source('ptax_sim_functions.R')
source('maps.R')
# set the house we want and example districts
pin_14 <- "15361000280000"
year = 2021
tax_code = lookup_tax_code(year, pin_14)
agencies = lookup_agency(year, tax_code)
agency_list <- get_highest_ext(agencies)
sec_school <- select_second_school(agencies)
districts <- append(agency_list$agency_name, sec_school)
agency_df <- filter(agencies, agencies$agency_name %in% districts)
col_names <- c("district", "type", "levy", "base", "rate", "av", "eav", "property_tax")
df <- data.frame(matrix(ncol = 8, nrow = 0))
colnames(df) <- col_names
# Selecting top districts
df <- populate_df(df, districts, year, pin_14)
df <- format_df(df)
df$agency_minor_type <- factor(df$agency_minor_type, levels = c("COOK", "MUNI", "SCHOOL", "SCHOOL1", "WATER"))
df <- df[order(df$agency_minor_type), ]
# Creating extra districts to populate at the end
not_top_agencies <- filter(agencies, !(agencies$agency_name %in% districts))
df_extra_districts <- data.frame(matrix(ncol=8, nrow=0))
colnames(df_extra_districts) <- col_names
df_extra_districts <- populate_df(df_extra_districts, not_top_agencies$agency_name, year, pin_14)
df_extra_districts <- format_df(df_extra_districts)
# Taxing Districts to populate tables
dist_1 <- df$district[1]
dist_2 <- df$district[2]
dist_3 <- df$district[3]
dist_4 <- df$district[4]
dist_5 <- df$district[5]
```
![](chicago.jpeg)
## Introduction
Cook County relies on property taxes to serve its residents. Find out how your property tax is calculated by reading our guide.
The Cook County Assessor's Office, the State, and county taxing districts (schools, parks, etc.) work together to calculate fair property taxes for residents.
Let's talk a more thorough look at this outline below.
## What are property taxes?
Property tax is a tax assessed on real estate by a government authority, typically based on the value of the property.
The tax is used to fund public services such as schools, roads, and emergency services in the local area.
Property owners must pay this tax annually, regardless of whether they own a residential or commercial property.
![](outline_pic_2.png)
## How do property taxes work?
::: columns
::: {.column width="50%"}
Let's take a look at a **property tax bill**.
This is confusing. Let's zoom out and explain what this all means and how we calculate these numbers.
First, let's take a look at tax rates...
:::
::: {.column width="50%"}
:::
:::
## How do we calculate tax rate?
We take a look at the [**`r dist_1`**]{style="color:purple;"} (as colored in purple)
```{r, echo=FALSE}
(p1_1_cook <- ggplot() +
geom_sf(data = shp_bnd_cook) +
geom_sf(data = shp_bnd_chicago) +
geom_sf(data = shp_bnd_riverside, fill = "#6a3d9a") +
theme_void())
```
We zoom in to show the taxing district of the [**`r dist_1`**]{style="color:purple;"}
Each year, this taxing district sets a [**levy**]{style="color:purple;"} . This is the amount it needs to collect that year in order to provide services. (This was `r df$levy[1]` in 2021.)
Let's zoom in even further. If you are a [**property owner**]{style="color:red;"} in [**`r dist_1`**]{style="color:purple;"} of a home worth [**`r df$av[1]`**]{style="color:red;"}, your taxable value (EAV) is [**`r df$eav[1]`**]{style="color:red;"}.
```{r, echo=FALSE}
(p1_1_riverside_pin <- ggplot() +
annotation_map_tile("cartolight", zoomin = -1) +
annotation_scale(location = "br", unit_category = "imperial") +
geom_sf(
data = shp_bnd_example_pin,
fill = "#e41a1c"
) +
geom_sf(
data = shp_bnd_riverside,
color = "#6a3d9a",
fill = "transparent",
linewidth = 1
) +
theme_void())
```
The total taxable value of all properties in [**`r dist_1`**]{style="color:purple;"} make up its [**tax base**]{style="color:fuchsia;"} ([**`r dist_1`'s**]{style="color:purple;"} tax base is [**`r df$base[1]`**]{style="color:fuchsia;"} )
To divide the cost of services among all property owners, [**`r dist_1`**]{style="color:purple;"} sets its local tax rate equal to: $\mathrm{{Levy \over Base} = Tax \hspace{0.1cm} rate}$
```{r, echo=FALSE}
(p1_1_riverside_base <- ggplot() +
annotation_map_tile("cartolight", zoomin = -1) +
annotation_scale(location = "br", unit_category = "imperial") +
geom_sf(
data = shp_bnd_riverside_pins,
fill = "#cab2d6",
color = "white",
alpha = 0.75
) +
geom_sf(
data = shp_bnd_riverside,
color = "#6a3d9a",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_example_pin,
fill = "#e41a1c"
) +
theme_void())
```
Using real numbers, the tax rate equals: $\mathrm{{5.9M \over 320M} = 1.84%}$
## How much of this tax rate do you pay?
This **rate** is then applied to your **property's taxable value**:
The rate and tax amount then appear as a line item on your tax bill:
| District | Levy/Base | 2021 Rate | 2021 Tax |
|-----------------------|-----------------|-----------------|-----------------|
| [**`r dist_1`**]{style="color:purple;"} | `r df$levy[1]`/`r df$base[1]` | `r df$rate[1]` | `r df$property_tax[1]` |
But [**`r dist_1`**]{style="color:purple;"} isn't the only local government you must pay taxes to...
```{r, echo=FALSE}
(p1_1_riverside_base <- ggplot() +
annotation_map_tile("cartolight", zoomin = -1) +
annotation_scale(location = "br", unit_category = "imperial") +
geom_sf(
data = shp_bnd_riverside_pins,
fill = "#cab2d6",
color = "white",
alpha = 0.75
) +
geom_sf(
data = shp_bnd_riverside,
color = "#6a3d9a",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_example_pin,
fill = "#e41a1c"
) +
theme_void())
```
There's also [**`r dist_2`**]{style="color:orange;"} , which sets its own **levy** of [**`r df$levy[2]`**]{style="color:orange;"}
```{r, echo=FALSE}
(p1_1_elem_dist_levy <- ggplot() +
annotation_map_tile("cartolight", zoomin = -1) +
annotation_scale(location = "br", unit_category = "imperial") +
geom_sf(
data = shp_bnd_riverside_pins,
fill = "#cab2d6",
color = "white"
) +
geom_sf(
data = shp_bnd_riverside,
color = "#984ea3",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_elem_dist,
color = "#ff7f00",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_example_pin,
fill = "#e41a1c"
) +
theme_void())
```
It adds another line item to your tax bill...
| District | Levy/Base | 2021 Rate | 2021 Tax |
|-----------------------|-----------------|-----------------|-----------------|
| [**`r dist_1`**]{style="color:purple;"} | `r df %>% filter(district==dist_1) %>% select(levy)`/ `r df %>% filter(district==dist_1) %>% select(base)` | `r df %>% filter(district==dist_1) %>% select(rate)` | `r df %>% filter(district==dist_1) %>% select(property_tax)` |
| [**`r dist_2`**]{style="color:orange;"} | `r df %>% filter(district==dist_2) %>% select(levy)`/`r df %>% filter(district==dist_2) %>% select(base)` | `r df %>% filter(district==dist_2) %>% select(rate)` | `r df %>% filter(district==dist_2) %>% select(property_tax)` |
```{r, echo=FALSE}
(p1_1_elem_dist_base <- ggplot() +
annotation_map_tile("cartolight", zoomin = -1) +
annotation_scale(location = "br", unit_category = "imperial") +
geom_sf(
data = shp_bnd_elem_dist_pins,
fill = "#fdbf6f",
color = "white"
) +
geom_sf(
data = shp_bnd_riverside_pins,
fill = "#cab2d6",
color = "white"
) +
geom_sf(
data = shp_bnd_riverside,
color = "#984ea3",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_elem_dist,
color = "#ff7f00",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_example_pin,
fill = "#e41a1c"
) +
theme_void())
```
You must also pay [**`r dist_3`**]{style="color:green;"}
```{r, echo=FALSE}
(p1_1_township_base <- ggplot() +
annotation_map_tile("cartolight", zoomin = -1) +
annotation_scale(location = "br", unit_category = "imperial") +
geom_sf(
data = shp_bnd_riverside_pins,
fill = "#cab2d6",
color = "white"
) +
geom_sf(
data = shp_bnd_elem_dist_pins,
fill = "#fdbf6f",
color = "white"
) +
geom_sf(
data = shp_bnd_township_pins,
fill = "#b2df8a",
color = "white"
) +
geom_sf(
data = shp_bnd_riverside,
color = "#984ea3",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_elem_dist,
color = "#ff7f00",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_township,
color = "#33a02c",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_example_pin,
fill = "#e41a1c"
) +
theme_void())
library(latex2exp)
```
| District | Levy/Base | 2021 Rate | 2021 Tax |
|-----------------------|-----------------|-----------------|-----------------|
| [**`r dist_1`**]{style="color:purple;"} | `r df %>% filter(district==dist_1) %>% select(levy)`/ `r df %>% filter(district==dist_1) %>% select(base)` | `r df %>% filter(district==dist_1) %>% select(rate)` | `r df %>% filter(district==dist_1) %>% select(property_tax)` |
| [**`r dist_2`**]{style="color:orange;"} | `r df %>% filter(district==dist_2) %>% select(levy)`/ `r df %>% filter(district==dist_2) %>% select(base)` | `r df %>% filter(district==dist_2) %>% select(rate)` | `r df %>% filter(district==dist_2) %>% select(property_tax)` |
| [**`r dist_3`**]{style="color:green;"} | `r df %>% filter(district==dist_3) %>% select(levy)`/ `r df %>% filter(district==dist_3) %>% select(base)` | `r df %>% filter(district==dist_3) %>% select(rate)` | `r df %>% filter(district==dist_3) %>% select(property_tax)` |
And [**`r dist_4`**]{style="color:blue;"}
```{r, echo=FALSE}
(p1_1_hs_dist_base <- ggplot() +
annotation_map_tile("cartolight", zoomin = -1) +
annotation_scale(location = "br", unit_category = "imperial") +
geom_sf(
data = shp_bnd_riverside_pins,
fill = "#cab2d6",
color = "white"
) +
geom_sf(
data = shp_bnd_elem_dist_pins,
fill = "#fdbf6f",
color = "white"
) +
geom_sf(
data = shp_bnd_township_pins,
fill = "#b2df8a",
color = "white"
) +
geom_sf(
data = shp_bnd_hs_dist_pins,
fill = "#a6cee3",
color = "white"
) +
geom_sf(
data = shp_bnd_riverside,
color = "#984ea3",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_elem_dist,
color = "#ff7f00",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_township,
color = "#33a02c",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_hs_dist,
color = "#1f78b4",
fill = "transparent",
linewidth = 1
) +
geom_sf(
data = shp_bnd_example_pin,
fill = "#e41a1c"
) +
coord_sf(clip = "off") +
theme_void())
```
| District | Levy/Base | 2021 Rate | 2021 Tax |
|-----------------------|----------------|----------------|----------------|
| [**`r dist_1`**]{style="color:purple;"} | `r df %>% filter(district==dist_1) %>% select(levy)`/ `r df %>% filter(district==dist_1) %>% select(base)` | `r df %>% filter(district==dist_1) %>% select(rate)` | `r df %>% filter(district==dist_1) %>% select(property_tax)` |
| [**`r dist_2`**]{style="color:orange;"} | `r df %>% filter(district==dist_2) %>% select(levy)`/ `r df %>% filter(district==dist_2) %>% select(base)` | `r df %>% filter(district==dist_2) %>% select(rate)` | `r df %>% filter(district==dist_2) %>% select(property_tax)` |
| [**`r dist_3`**]{style="color:green;"} | `r df %>% filter(district==dist_3) %>% select(levy)`/ `r df %>% filter(district==dist_3) %>% select(base)` | `r df %>% filter(district==dist_3) %>% select(rate)` | `r df %>% filter(district==dist_3) %>% select(property_tax)` |
| [**`r dist_4`**]{style="color:blue;"} |`r df %>% filter(district==dist_4) %>% select(levy)`/`r df %>% filter(district==dist_4) %>% select(base)` | `r df %>% filter(district==dist_4) %>% select(rate)`| `r df %>% filter(district==dist_4) %>% select(property_tax)` |
And the [**`r dist_5`**]{style="color:brown;"}
```{r, echo=FALSE}
(p1_1_cc_dist <- ggplot() +
annotation_map_tile("cartolight", zoomin = -1) +
annotation_scale(location = "br", unit_category = "imperial") +
geom_sf(
data = shp_bnd_cc_dist,
color = "#e31a1c",
fill = "#fb9a99",
linewidth = 1,
alpha = 0.2
) +
geom_sf(
data = shp_bnd_hs_diff,
color = "#1f78b4",
fill = "#a6cee3",
linewidth = 1,
alpha = 0.2
) +
geom_sf(
data = shp_bnd_township_diff,
color = "#33a02c",
fill = "#b2df8a",
linewidth = 1,
alpha = 0.2
) +
geom_sf(
data = shp_bnd_elem_diff,
color = "#ff7f00",
fill = "#fdbf6f",
linewidth = 1,
alpha = 0.2
) +
geom_sf(
data = shp_bnd_riverside,
color = "#984ea3",
fill = "#cab2d6",
linewidth = 1,
alpha = 0.2
) +
coord_sf(clip = "off") +
theme_void())
```
| District | Levy/Base | 2021 Rate | 2021 Tax |
|-----------------------|----------------|----------------|----------------|
| [**`r dist_1`**]{style="color:purple;"} | `r df %>% filter(district==dist_1) %>% select(levy)`/ `r df %>% filter(district==dist_1) %>% select(base)` | `r df %>% filter(district==dist_1) %>% select(rate)` | `r df %>% filter(district==dist_1) %>% select(property_tax)` |
| [**`r dist_2`**]{style="color:orange;"} | `r df %>% filter(district==dist_2) %>% select(levy)`/ `r df %>% filter(district==dist_2) %>% select(base)` | `r df %>% filter(district==dist_2) %>% select(rate)` | `r df %>% filter(district==dist_2) %>% select(property_tax)` |
| [**`r dist_3`**]{style="color:green;"} | `r df %>% filter(district==dist_3) %>% select(levy)`/ `r df %>% filter(district==dist_3) %>% select(base)` | `r df %>% filter(district==dist_3) %>% select(rate)` | `r df %>% filter(district==dist_3) %>% select(property_tax)` |
| [**`r dist_4`**]{style="color:blue;"} |`r df %>% filter(district==dist_4) %>% select(levy)`/`r df %>% filter(district==dist_4) %>% select(base)` | `r df %>% filter(district==dist_4) %>% select(rate)`| `r df %>% filter(district==dist_4) %>% select(property_tax)` |
| [**`r dist_5`**]{style="color:blue;"} |`r df %>% filter(district==dist_5) %>% select(levy)`/`r df %>% filter(district==dist_5) %>% select(base)` | `r df %>% filter(district==dist_5) %>% select(rate)`| `r df %>% filter(district==dist_5) %>% select(property_tax)` |
And so on:
| District | Levy/Base | 2021 Rate | 2021 Tax |
|-----------------------|-----------------|-----------------|-----------------|
| [**`r dist_1`**]{style="color:purple;"} | `r df %>% filter(district==dist_1) %>% select(levy)` / `r df %>% filter(district==dist_1) %>% select(base)` | `r df %>% filter(district==dist_1) %>% select(rate)` | `r df %>% filter(district==dist_1) %>% select(property_tax)` |
| [**`r dist_2`**]{style="color:orange;"} | `r df %>% filter(district==dist_2) %>% select(levy)` / `r df %>% filter(district==dist_2) %>% select(base)` | `r df %>% filter(district==dist_2) %>% select(rate)` | `r df %>% filter(district==dist_2) %>% select(property_tax)` |
| [**`r dist_3`**]{style="color:green;"} | `r df %>% filter(district==dist_3) %>% select(levy)` / `r df %>% filter(district==dist_3) %>% select(base)` | `r df %>% filter(district==dist_3) %>% select(rate)` | `r df %>% filter(district==dist_3) %>% select(property_tax)` |
| [**`r dist_4`**]{style="color:blue;"} | `r df %>% filter(district==dist_4) %>% select(levy)` / `r df %>% filter(district==dist_4) %>% select(base)` | `r df %>% filter(district==dist_4) %>% select(rate)` | `r df %>% filter(district==dist_4) %>% select(property_tax)` |
| [**`r dist_5`**]{style="color:red;"} | `r df %>% filter(district==dist_5) %>% select(levy)` / `r df %>% filter(district==dist_5) %>% select(base)` | `r df %>% filter(district==dist_5) %>% select(rate)` | `r df %>% filter(district==dist_5) %>% select(property_tax)` |
| [**`r df_extra_districts$district[1]`**]{style="color:navy;"} | `r df_extra_districts %>% filter(district==df_extra_districts$district[1]) %>% select(levy)` / `r df_extra_districts %>% filter(district==df_extra_districts$district[1]) %>% select(base)` | `r df_extra_districts %>% filter(district==df_extra_districts$district[1]) %>% select(rate)` | `r df_extra_districts %>% filter(district==df_extra_districts$district[1]) %>% select(property_tax)` |
| [**`r df_extra_districts$district[2]`**]{style="color:black;"} | `r df_extra_districts %>% filter(district==df_extra_districts$district[2]) %>% select(levy)` / `r df_extra_districts %>% filter(district==df_extra_districts$district[2]) %>% select(base)` | `r df_extra_districts %>% filter(district==df_extra_districts$district[2]) %>% select(rate)` | `r df_extra_districts %>% filter(district==df_extra_districts$district[2]) %>% select(property_tax)` |
## Now let's compare this to the bill above
When reorganized, our bill matches the real bill
Except there are more districts on the real bill...
::: footer
Learn more: [Cook County Assessor's Office](https://www.cookcountyassessor.com/)
:::