-
Notifications
You must be signed in to change notification settings - Fork 83
/
index.js
383 lines (317 loc) · 10.4 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
'use strict';
var RBush = require('rbush');
var Queue = require('tinyqueue');
var pointInPolygon = require('point-in-polygon');
var orient = require('robust-predicates/umd/orient2d.min.js').orient2d;
// Fix for require issue in webpack https://github.com/mapbox/concaveman/issues/18
if (Queue.default) {
Queue = Queue.default;
}
module.exports = concaveman;
module.exports.default = concaveman;
function concaveman(points, concavity, lengthThreshold) {
// a relative measure of concavity; higher value means simpler hull
concavity = Math.max(0, concavity === undefined ? 2 : concavity);
// when a segment goes below this length threshold, it won't be drilled down further
lengthThreshold = lengthThreshold || 0;
// start with a convex hull of the points
var hull = fastConvexHull(points);
// index the points with an R-tree
var tree = new RBush(16);
tree.toBBox = function (a) {
return {
minX: a[0],
minY: a[1],
maxX: a[0],
maxY: a[1]
};
};
tree.compareMinX = function (a, b) { return a[0] - b[0]; };
tree.compareMinY = function (a, b) { return a[1] - b[1]; };
tree.load(points);
// turn the convex hull into a linked list and populate the initial edge queue with the nodes
var queue = [];
for (var i = 0, last; i < hull.length; i++) {
var p = hull[i];
tree.remove(p);
last = insertNode(p, last);
queue.push(last);
}
// index the segments with an R-tree (for intersection checks)
var segTree = new RBush(16);
for (i = 0; i < queue.length; i++) segTree.insert(updateBBox(queue[i]));
var sqConcavity = concavity * concavity;
var sqLenThreshold = lengthThreshold * lengthThreshold;
// process edges one by one
while (queue.length) {
var node = queue.shift();
var a = node.p;
var b = node.next.p;
// skip the edge if it's already short enough
var sqLen = getSqDist(a, b);
if (sqLen < sqLenThreshold) continue;
var maxSqLen = sqLen / sqConcavity;
// find the best connection point for the current edge to flex inward to
p = findCandidate(tree, node.prev.p, a, b, node.next.next.p, maxSqLen, segTree);
// if we found a connection and it satisfies our concavity measure
if (p && Math.min(getSqDist(p, a), getSqDist(p, b)) <= maxSqLen) {
// connect the edge endpoints through this point and add 2 new edges to the queue
queue.push(node);
queue.push(insertNode(p, node));
// update point and segment indexes
tree.remove(p);
segTree.remove(node);
segTree.insert(updateBBox(node));
segTree.insert(updateBBox(node.next));
}
}
// convert the resulting hull linked list to an array of points
node = last;
var concave = [];
do {
concave.push(node.p);
node = node.next;
} while (node !== last);
concave.push(node.p);
return concave;
}
function findCandidate(tree, a, b, c, d, maxDist, segTree) {
var queue = new Queue([], compareDist);
var node = tree.data;
// search through the point R-tree with a depth-first search using a priority queue
// in the order of distance to the edge (b, c)
while (node) {
for (var i = 0; i < node.children.length; i++) {
var child = node.children[i];
var dist = node.leaf ? sqSegDist(child, b, c) : sqSegBoxDist(b, c, child);
if (dist > maxDist) continue; // skip the node if it's farther than we ever need
queue.push({
node: child,
dist: dist
});
}
while (queue.length && !queue.peek().node.children) {
var item = queue.pop();
var p = item.node;
// skip all points that are as close to adjacent edges (a,b) and (c,d),
// and points that would introduce self-intersections when connected
var d0 = sqSegDist(p, a, b);
var d1 = sqSegDist(p, c, d);
if (item.dist < d0 && item.dist < d1 &&
noIntersections(b, p, segTree) &&
noIntersections(c, p, segTree)) return p;
}
node = queue.pop();
if (node) node = node.node;
}
return null;
}
function compareDist(a, b) {
return a.dist - b.dist;
}
// square distance from a segment bounding box to the given one
function sqSegBoxDist(a, b, bbox) {
if (inside(a, bbox) || inside(b, bbox)) return 0;
var d1 = sqSegSegDist(a[0], a[1], b[0], b[1], bbox.minX, bbox.minY, bbox.maxX, bbox.minY);
if (d1 === 0) return 0;
var d2 = sqSegSegDist(a[0], a[1], b[0], b[1], bbox.minX, bbox.minY, bbox.minX, bbox.maxY);
if (d2 === 0) return 0;
var d3 = sqSegSegDist(a[0], a[1], b[0], b[1], bbox.maxX, bbox.minY, bbox.maxX, bbox.maxY);
if (d3 === 0) return 0;
var d4 = sqSegSegDist(a[0], a[1], b[0], b[1], bbox.minX, bbox.maxY, bbox.maxX, bbox.maxY);
if (d4 === 0) return 0;
return Math.min(d1, d2, d3, d4);
}
function inside(a, bbox) {
return a[0] >= bbox.minX &&
a[0] <= bbox.maxX &&
a[1] >= bbox.minY &&
a[1] <= bbox.maxY;
}
// check if the edge (a,b) doesn't intersect any other edges
function noIntersections(a, b, segTree) {
var minX = Math.min(a[0], b[0]);
var minY = Math.min(a[1], b[1]);
var maxX = Math.max(a[0], b[0]);
var maxY = Math.max(a[1], b[1]);
var edges = segTree.search({minX: minX, minY: minY, maxX: maxX, maxY: maxY});
for (var i = 0; i < edges.length; i++) {
if (intersects(edges[i].p, edges[i].next.p, a, b)) return false;
}
return true;
}
function cross(p1, p2, p3) {
return orient(p1[0], p1[1], p2[0], p2[1], p3[0], p3[1]);
}
// check if the edges (p1,q1) and (p2,q2) intersect
function intersects(p1, q1, p2, q2) {
return p1 !== q2 && q1 !== p2 &&
cross(p1, q1, p2) > 0 !== cross(p1, q1, q2) > 0 &&
cross(p2, q2, p1) > 0 !== cross(p2, q2, q1) > 0;
}
// update the bounding box of a node's edge
function updateBBox(node) {
var p1 = node.p;
var p2 = node.next.p;
node.minX = Math.min(p1[0], p2[0]);
node.minY = Math.min(p1[1], p2[1]);
node.maxX = Math.max(p1[0], p2[0]);
node.maxY = Math.max(p1[1], p2[1]);
return node;
}
// speed up convex hull by filtering out points inside quadrilateral formed by 4 extreme points
function fastConvexHull(points) {
var left = points[0];
var top = points[0];
var right = points[0];
var bottom = points[0];
// find the leftmost, rightmost, topmost and bottommost points
for (var i = 0; i < points.length; i++) {
var p = points[i];
if (p[0] < left[0]) left = p;
if (p[0] > right[0]) right = p;
if (p[1] < top[1]) top = p;
if (p[1] > bottom[1]) bottom = p;
}
// filter out points that are inside the resulting quadrilateral
var cull = [left, top, right, bottom];
var filtered = cull.slice();
for (i = 0; i < points.length; i++) {
if (!pointInPolygon(points[i], cull)) filtered.push(points[i]);
}
// get convex hull around the filtered points
return convexHull(filtered);
}
// create a new node in a doubly linked list
function insertNode(p, prev) {
var node = {
p: p,
prev: null,
next: null,
minX: 0,
minY: 0,
maxX: 0,
maxY: 0
};
if (!prev) {
node.prev = node;
node.next = node;
} else {
node.next = prev.next;
node.prev = prev;
prev.next.prev = node;
prev.next = node;
}
return node;
}
// square distance between 2 points
function getSqDist(p1, p2) {
var dx = p1[0] - p2[0],
dy = p1[1] - p2[1];
return dx * dx + dy * dy;
}
// square distance from a point to a segment
function sqSegDist(p, p1, p2) {
var x = p1[0],
y = p1[1],
dx = p2[0] - x,
dy = p2[1] - y;
if (dx !== 0 || dy !== 0) {
var t = ((p[0] - x) * dx + (p[1] - y) * dy) / (dx * dx + dy * dy);
if (t > 1) {
x = p2[0];
y = p2[1];
} else if (t > 0) {
x += dx * t;
y += dy * t;
}
}
dx = p[0] - x;
dy = p[1] - y;
return dx * dx + dy * dy;
}
// segment to segment distance, ported from http://geomalgorithms.com/a07-_distance.html by Dan Sunday
function sqSegSegDist(x0, y0, x1, y1, x2, y2, x3, y3) {
var ux = x1 - x0;
var uy = y1 - y0;
var vx = x3 - x2;
var vy = y3 - y2;
var wx = x0 - x2;
var wy = y0 - y2;
var a = ux * ux + uy * uy;
var b = ux * vx + uy * vy;
var c = vx * vx + vy * vy;
var d = ux * wx + uy * wy;
var e = vx * wx + vy * wy;
var D = a * c - b * b;
var sc, sN, tc, tN;
var sD = D;
var tD = D;
if (D === 0) {
sN = 0;
sD = 1;
tN = e;
tD = c;
} else {
sN = b * e - c * d;
tN = a * e - b * d;
if (sN < 0) {
sN = 0;
tN = e;
tD = c;
} else if (sN > sD) {
sN = sD;
tN = e + b;
tD = c;
}
}
if (tN < 0.0) {
tN = 0.0;
if (-d < 0.0) sN = 0.0;
else if (-d > a) sN = sD;
else {
sN = -d;
sD = a;
}
} else if (tN > tD) {
tN = tD;
if ((-d + b) < 0.0) sN = 0;
else if (-d + b > a) sN = sD;
else {
sN = -d + b;
sD = a;
}
}
sc = sN === 0 ? 0 : sN / sD;
tc = tN === 0 ? 0 : tN / tD;
var cx = (1 - sc) * x0 + sc * x1;
var cy = (1 - sc) * y0 + sc * y1;
var cx2 = (1 - tc) * x2 + tc * x3;
var cy2 = (1 - tc) * y2 + tc * y3;
var dx = cx2 - cx;
var dy = cy2 - cy;
return dx * dx + dy * dy;
}
function compareByX(a, b) {
return a[0] === b[0] ? a[1] - b[1] : a[0] - b[0];
}
function convexHull(points) {
points.sort(compareByX);
var lower = [];
for (var i = 0; i < points.length; i++) {
while (lower.length >= 2 && cross(lower[lower.length - 2], lower[lower.length - 1], points[i]) <= 0) {
lower.pop();
}
lower.push(points[i]);
}
var upper = [];
for (var ii = points.length - 1; ii >= 0; ii--) {
while (upper.length >= 2 && cross(upper[upper.length - 2], upper[upper.length - 1], points[ii]) <= 0) {
upper.pop();
}
upper.push(points[ii]);
}
upper.pop();
lower.pop();
return lower.concat(upper);
}