-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathensemble.m
139 lines (122 loc) · 3.41 KB
/
ensemble.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
function [model] = ensemble(model)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
nr = length(model.rid);
Nflx = model.p.N;
nu = length(Nflx(1,:));
model.ensemble.Nflx = Nflx;
model.ensemble.nu = nu;
model.ensemble.ne = cell(nr,1);
model.ensemble.nei = cell(nr,1);
%model.ensemble.nrev = cell(nr,1);
model.ensemble.nvr = cell(nr,1);
%model.ensemble.IL = cell(nr,1);
%model.ensemble.dRLdp = cell(nr,1);
model.ensemble.dELdp = cell(nr,1);
%model.ensemble.dRRdp = cell(nr,1);
model.ensemble.dVRdp = cell(nr,1);
%model.ensemble.IR = cell(nr,1);
model.ensemble.V = cell(nr,1);
model.ensemble.dEildp = cell(nr,1);
model.ensemble.dEirdp = cell(nr,1);
model.ensemble.dEirdp = cell(nr,1);
model.ensemble.N = cell(nr,1);
model.ensemble.ppos = cell(nr,1);
csum = 0;
vref = model.d.flx{1};
for i = 1:nr
ne = sqrt(length(model.p.dEdk{i}(:,1)));
nk = length(model.kinetic(i).S(1,:));
nei = 0;
if ~isempty([model.kinetic(i).c_in,model.kinetic(i).uc_in,model.kinetic(i).nc_in])
nei = length(model.kinetic(i).I(1,:));
end
%if vref(i)>=0
rflag = true;
%else
% rflag = false;
%end
%if vref(i) == 0
% vref(i) = 0.01;
%end
nvr = ne;
np = ne+nei+nvr-1;
nef = np-nvr;
N = [-1*ones(1,nef);eye(nef)];
%{
% constructing RL
dRLdr = zeros(nk*nk,nrev);
IL = eye(nk);
for j = 1:nrev
dRLdr(nk*(2*j-2)+(2*j-1),j) = -1;
dRLdr(nk*(2*j-1)+(2*j),j) = -1;
end
dRLdp = [zeros(nk*nk,(ne+nei)),dRLdr];
%}
%constructing EL
dELdne = sparse(nk*nk,ne);
for j = 1:ne
dELdne(nk*(2*j-2)+(2*j-1),j) = 1;
if j < ne
dELdne(nk*(2*j-1)+(2*j),j+1) = 1;
else
dELdne(nk*(2*j-1)+(2*j),1) = 1;
end
end
dELdp = [dELdne,sparse(nk*nk,nei+nvr)];
%constructing VR
dVRdr = sparse(nk,nvr);
%IR = zeros(nk,nk);
for j = 1:nvr
%if ~rflag
dVRdr((2*j-1),j) = 1;
dVRdr((2*j),j) = 1;
%IR(2*j,2*j) = 1;
%{
%else
dRRdr(nk*(2*j-1)+(2*j),j) = 1;
IR(2*j-1,2*j-1) = 1;
end
%}
end
dVRdp = [sparse(nk,(ne+nei)),dVRdr];
%computing V
V = vref(i)*ones(nk,1);
%V = vref(logical(model.d.rmap{1}(:,i)))*ones(nk,1);
%V = repmat(Nflx(i,:),nk,1);
ind = 2:2:nk;
%V(ind) = 0;
V(ind,:) = 0;
%matrices for computing Ki
dEirdei = speye(nei);
dEilde = sparse(nei*nei,ne);
if nei>0
for j = 1:nei
dEilde(nei*(j-1)+j,:) = model.kinetic(i).I(:,j)';
end
end
dEirdp = [sparse(nei,ne),dEirdei,sparse(nei,nvr)];
dEildp = [dEilde,sparse(nei*nei,nei),sparse(nei*nei,nvr)];
%collect and store required matrices
model.ensemble.ne{i} = ne;
model.ensemble.nei{i} = nei;
%model.ensemble.IL{i} = IL;
%model.ensemble.dRLdp{i} = dRLdp;
model.ensemble.dELdp{i} = dELdp;
model.ensemble.dVRdp{i} = dVRdp;
%model.ensemble.IR{i} = IR;
%model.ensemble.V{i} = abs(vref(i))*ones(nk,1);
model.ensemble.V{i} = V;
model.ensemble.dEildp{i} = dEildp;
model.ensemble.dEirdp{i} = dEirdp;
model.ensemble.N{i} = blkdiag(N,eye(nvr));
if model.p.exch(i)
%if model.p.exch(i)&&~model.p.sub(i)
nvr = nvr-1;
end
model.ensemble.nvr{i} = nvr;
np = ne+nei+nvr-1;
model.ensemble.ppos{i} = csum+1:csum+np;
csum = csum+np;
end
end