-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdG_prediction_modelseed_dev_branch_file_run.py
455 lines (339 loc) · 12.7 KB
/
dG_prediction_modelseed_dev_branch_file_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import pandas as pd
import numpy as np
import json
import pdb
from tqdm import tqdm
import re
from PIL import Image
import pickle
import sys
import joblib
from tqdm import tqdm
sys.path.append('./CC/')
import chemaxon
from chemaxon import *
from compound import Compound
from compound_cacher import CompoundCacher
from rdkit.Chem import rdChemReactions as Reactions
from rdkit.Chem import Draw
from rdkit import Chem
# # loading dG functions and model
def load_smiles():
db = pd.read_csv('./data/cache_compounds_20160818.csv',
index_col='compound_id')
db_smiles = db['smiles_pH7'].to_dict()
return db_smiles
def load_molsig_rad1():
molecular_signature_r1 = json.load(open('./data/decompose_vector_ac.json'))
return molecular_signature_r1
def load_molsig_rad2():
molecular_signature_r2 = json.load(
open('./data/decompose_vector_ac_r2_py3_indent_modified_manual.json'))
return molecular_signature_r2
def load_model():
filename = './model/M12_model_BR.pkl'
loaded_model = joblib.load(open(filename, 'rb'))
return loaded_model
def load_compound_cache():
ccache = CompoundCacher()
return ccache
def count_substructures(radius, molecule):
"""Helper function for get the information of molecular signature of a
metabolite. The relaxed signature requires the number of each substructure
to construct a matrix for each molecule.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
molecule : Molecule
a molecule object create by RDkit (e.g. Chem.MolFromInchi(inchi_code)
or Chem.MolToSmiles(smiles_code))
Returns
-------
dict
dictionary of molecular signature for a molecule,
{smiles: molecular_signature}
"""
m = molecule
smi_count = dict()
atomList = [atom for atom in m.GetAtoms()]
for i in range(len(atomList)):
env = Chem.FindAtomEnvironmentOfRadiusN(m, radius, i)
atoms = set()
for bidx in env:
atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx())
atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx())
# only one atom is in this environment, such as O in H2O
if len(atoms) == 0:
atoms = {i}
smi = Chem.MolFragmentToSmiles(m, atomsToUse=list(atoms),
bondsToUse=env, canonical=True)
if smi in smi_count:
smi_count[smi] = smi_count[smi] + 1
else:
smi_count[smi] = 1
return smi_count
def decompse_novel_mets_rad1(novel_smiles, radius=1):
decompose_vector = dict()
for cid, smiles_pH7 in novel_smiles.items():
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = count_substructures(radius, mol)
decompose_vector[cid] = smi_count
return decompose_vector
def decompse_novel_mets_rad2(novel_smiles, radius=2):
decompose_vector = dict()
for cid, smiles_pH7 in novel_smiles.items():
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = count_substructures(radius, mol)
decompose_vector[cid] = smi_count
return decompose_vector
def parse_reaction_formula_side(s):
"""
Parses the side formula, e.g. '2 C00001 + C00002 + 3 C00003'
Ignores stoichiometry.
Returns:
The set of CIDs.
"""
if s.strip() == "null":
return {}
compound_bag = {}
for member in re.split('\s+\+\s+', s):
tokens = member.split(None, 1)
if len(tokens) == 0:
continue
if len(tokens) == 1:
amount = 1
key = member
else:
amount = float(tokens[0])
key = tokens[1]
compound_bag[key] = compound_bag.get(key, 0) + amount
return compound_bag
def parse_formula(formula, arrow='<=>', rid=None):
"""
Parses a two-sided formula such as: 2 C00001 => C00002 + C00003
Return:
The set of substrates, products and the direction of the reaction
"""
tokens = formula.split(arrow)
if len(tokens) < 2:
print(('Reaction does not contain the arrow sign (%s): %s'
% (arrow, formula)))
if len(tokens) > 2:
print(('Reaction contains more than one arrow sign (%s): %s'
% (arrow, formula)))
left = tokens[0].strip()
right = tokens[1].strip()
sparse_reaction = {}
for cid, count in parse_reaction_formula_side(left).items():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) - count
for cid, count in parse_reaction_formula_side(right).items():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) + count
return sparse_reaction
def draw_rxn_figure(rxn_dict, db_smiles, novel_smiles):
# db_smiles = load_smiles()
left = ''
right = ''
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is not considered
if stoic > 0:
if met in db_smiles:
right = right + db_smiles[met] + '.'
else:
right = right + novel_smiles[met] + '.'
else:
if met in db_smiles:
left = left + db_smiles[met] + '.'
else:
left = left + novel_smiles[met] + '.'
smarts = left[:-1] + '>>' + right[:-1]
# print smarts
smarts = str(smarts)
rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True)
return Draw.ReactionToImage(rxn) # , subImgSize=(400, 400))
def get_rule(rxn_dict, molsig1, molsig2, novel_decomposed1, novel_decomposed2):
if novel_decomposed1 != None:
for cid in novel_decomposed1:
molsig1[cid] = novel_decomposed1[cid]
if novel_decomposed2 != None:
for cid in novel_decomposed2:
molsig2[cid] = novel_decomposed2[cid]
molsigna_df1 = pd.DataFrame.from_dict(molsig1).fillna(0)
all_mets1 = molsigna_df1.columns.tolist()
all_mets1.append("C00080")
all_mets1.append("C00282")
molsigna_df2 = pd.DataFrame.from_dict(molsig2).fillna(0)
all_mets2 = molsigna_df2.columns.tolist()
all_mets2.append("C00080")
all_mets2.append("C00282")
moieties_r1 = open('./data/group_names_r1.txt')
moieties_r2 = open('./data/group_names_r2_py3_modified_manual.txt')
moie_r1 = moieties_r1.read().splitlines()
moie_r2 = moieties_r2.read().splitlines()
molsigna_df1 = molsigna_df1.reindex(moie_r1)
molsigna_df2 = molsigna_df2.reindex(moie_r2)
rule_df1 = pd.DataFrame(index=molsigna_df1.index)
rule_df2 = pd.DataFrame(index=molsigna_df2.index)
# for rid, value in reaction_dict.items():
# # skip the reactions with missing metabolites
# mets = value.keys()
# flag = False
# for met in mets:
# if met not in all_mets:
# flag = True
# break
# if flag: continue
rule_df1['change'] = 0
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df1['change'] += molsigna_df1[met] * stoic
rule_df2['change'] = 0
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df2['change'] += molsigna_df2[met] * stoic
rule_vec1 = rule_df1.to_numpy().T
rule_vec2 = rule_df2.to_numpy().T
m1, n1 = rule_vec1.shape
m2, n2 = rule_vec2.shape
zeros1 = np.zeros((m1, 44))
zeros2 = np.zeros((m2, 44))
X1 = np.concatenate((rule_vec1, zeros1), 1)
X2 = np.concatenate((rule_vec2, zeros2), 1)
rule_comb = np.concatenate((X1, X2), 1)
# rule_df_final = {}
# rule_df_final['rad1'] = rule_df1
# rule_df_final['rad2'] = rule_df2
return rule_comb, rule_df1, rule_df2
def get_ddG0(rxn_dict, pH, I, novel_mets):
ccache = CompoundCacher()
# ddG0 = get_transform_ddG0(rxn_dict, ccache, pH, I, T)
T = 298.15
ddG0_forward = 0
for compound_id, coeff in rxn_dict.items():
if novel_mets != None and compound_id in novel_mets:
comp = novel_mets[compound_id]
else:
comp = ccache.get_compound(compound_id)
ddG0_forward += coeff * comp.transform_pH7(pH, I, T)
return ddG0_forward
def get_dG0(rxn_dict, rid, pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets):
# rule_df = get_rxn_rule(rid)
rule_comb, rule_df1, rule_df2 = get_rule(
rxn_dict, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2)
X = rule_comb
ymean, ystd = loaded_model.predict(X, return_std=True)
CI = (ystd[0]*1.96)/np.sqrt(4001)
result = {}
# result['dG0'] = ymean[0] + get_ddG0(rxn_dict, pH, I)
# result['standard deviation'] = ystd[0]
# result_df = pd.DataFrame([result])
# result_df.style.hide_index()
# return result_df
return ymean[0] + get_ddG0(rxn_dict, pH, I, novel_mets), ystd[0], CI , rule_df1, rule_df2
# return ymean[0],ystd[0]
def get_dG0_only(rxn_dict, rid, pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets):
# rule_df = get_rxn_rule(rid)
rule_comb, rule_df1, rule_df2 = get_rule(
rxn_dict, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2)
X = rule_comb
ymean, ystd = loaded_model.predict(X, return_std=True)
CI = (ystd[0]*1.96)/np.sqrt(4001)
result = {}
# result['dG0'] = ymean[0] + get_ddG0(rxn_dict, pH, I)
# result['standard deviation'] = ystd[0]
# result_df = pd.DataFrame([result])
# result_df.style.hide_index()
# return result_df
return ymean[0] + get_ddG0(rxn_dict, pH, I, novel_mets), CI
# return ymean[0],ystd[0]
def parse_novel_molecule(add_info):
result = {}
for cid, InChI in add_info.items():
c = Compound.from_inchi('Test', cid, InChI)
result[cid] = c
return result
def parse_novel_smiles(result):
novel_smiles = {}
for cid, c in result.items():
smiles = c.smiles_pH7
novel_smiles[cid] = smiles
return novel_smiles
# In[ ]:
db_smiles = load_smiles()
molsig_r1 = load_molsig_rad1()
molsig_r2 = load_molsig_rad2()
loaded_model = load_model()
ccache = load_compound_cache()
# #==============================#
# json_fnames = get_ipython().getoutput('ls ./../ModelSEEDDatabase/Biochemistry/*.json')
# Compound_fname_list = []
# Rxn_fname_list = []
# Others = []
# for fname in tqdm(json_fnames):
# if "compound" in fname:
# Compound_fname_list.append(fname)
# elif "reaction" in fname:
# Rxn_fname_list.append(fname)
# else:
# Others.append(fname)
# Rxn_f0 = Rxn_fname_list[0]
Rxn_f0 = './../ModelSEEDDatabase/Biochemistry/reaction_00.json'
json_read = json.load(open(Rxn_f0))
KEGG_id_ls = []
mseed_rxn_id_ls = []
print('strarting.....')
for i, rxn in tqdm(enumerate(json_read)):
try:
rxn_alias = rxn['aliases']
for ki in rxn_alias:
if 'KEGG' in ki:
kegg_id_str = ki
KEGG_id = kegg_id_str.replace(' ', '').split(':')[1]
KEGG_id_ls.append(KEGG_id)
mseed_rxn_id_ls.append(rxn['id'])
except:
KEGG_id_ls.append('No KEGG id')
mseed_rxn_id_ls.append(rxn['id'])
kegg_rxn_eqn = json.load(open('./data/KEGG_rxn_eqn_master_branch.json'))
kegg_rxn_eqn_keys = list(kegg_rxn_eqn.keys())
not_in_kegg_db = []
present_in_kegg_db = []
for i in KEGG_id_ls:
temp = i.split(';')
if len(temp) == 1:
if i not in kegg_rxn_eqn_keys:
not_in_kegg_db.append(i)
else:
for j in temp:
if j not in kegg_rxn_eqn_keys:
present_in_kegg_db.append(i)
print('not found in KEGG db: ')
print(len(not_in_kegg_db))
dG_dict = {}
pH = 7.0
I = 0.25
print('start predicting....')
for ix, mseed in tqdm(enumerate(mseed_rxn_id_ls)):
kid = KEGG_id_ls[ix]
multipleKEGG = kid.split(';') ## split if there are multiple kegg ids associated with a single mseed reaction
temp_dict = {}
for krxn in multipleKEGG:
try:
reqn = kegg_rxn_eqn[krxn]
mu, CI = get_dG0_only(kegg_rxn_eqn[krxn], krxn, pH, I, loaded_model, molsig_r1, molsig_r2, [], [], [])
temp_dict[krxn] = {'dG': mu, 'dG_ConfidenceInterval': CI}
except:
temp_dict[krxn] = {'dG': np.NaN, 'dG_ConfidenceInterval': np.NaN}
dG_dict[mseed] = temp_dict
print('done.....started dumping!!!')
fdump_name = './Modelseed_dG/dG_rxn_file_1.json'
with open(fdump_name, 'w') as f:
json.dump(dG_dict, f, indent = 4)