-
Notifications
You must be signed in to change notification settings - Fork 2
/
predict.py
588 lines (460 loc) · 16.2 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
from scipy.io import savemat, loadmat
import pandas as pd
import pdb
import json
import numpy as np
from numpy import median, mean
from sklearn.linear_model import BayesianRidge, LinearRegression, RidgeCV
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_score, LeaveOneOut
import pickle
import matplotlib.pyplot as plt
# import seaborn as sns
# sns.set()
# from component_contribution.linalg import LINALG
# from component_contribution.compound_cacher import CompoundCacher
def linear_regression():
# ac = loadmat('./data/dGPredictor_stereo.mat')
ac = loadmat('./data/component_contribution_python.mat')
S = ac['train_S']
G = ac['G']
b = ac['b']
# w = ac['w']
# pdb.set_trace()
m, n = S.shape
assert G.shape[0] == m
assert b.shape == (n, 1)
STG = np.dot(S.T,G)
X = STG
# y = b.flatten()
y = b
reg = LinearRegression(fit_intercept=False).fit(X, y)
# filename = './model/linearReg_ac_all_model.sav'
# pickle.dump(reg, open(filename, 'wb'))
# filename = './model/linearReg_ac_all_model.sav'
# outfilename = '../cache/db_ac_all/result_linearReg.csv'
# predict(filename,outfilename)
# pdb.set_trace()
predicted = reg.predict(X)
print(reg.coef_)
# plt.hist(reg.coef_[0][0:264], bins=50)
plt.hist(reg.coef_[0][0:163], bins=50)
# plt.xscale('log')
plt.xlabel('$\Delta_g G^o$')
plt.ylabel('Count')
plt.savefig('./figures/linear_cc_groups.png')
mse = mean_squared_error(y, predicted)
r2 = r2_score(y, predicted)
print('Mean squared error: %.2f'
% mse)
# The coefficient of determination: 1 is perfect prediction
print('Coefficient of determination: %.4f'
% r2)
fig, ax = plt.subplots()
ax.scatter(y, predicted)
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=1)
ax.set_xlabel('Measured $\Delta_r G^o$')
ax.set_ylabel('Predicted $\Delta_r G^o$')
plt.figtext(.7, .2, "MSE = %.2f" % mse)
plt.figtext(.7, .25, "$R^2$ = %.4f" % r2)
plt.savefig('./figures/linear_regression_cc.png')
def ridge_regression():
ac = loadmat('./data/dGPredictor_stereo.mat')
S = ac['train_S']
G = ac['G']
b = ac['b']
# w = ac['w']
# pdb.set_trace()
m, n = S.shape
assert G.shape[0] == m
assert b.shape == (n, 1)
STG = np.dot(S.T,G)
X = STG
# y = b.flatten()
y = b
# reg = LinearRegression(fit_intercept=False).fit(X, y)
alphas = np.logspace(-6, 6, 200)
reg = RidgeCV(alphas=alphas).fit(X, y)
# filename = './model/linearReg_ac_all_model.sav'
# pickle.dump(reg, open(filename, 'wb'))
# filename = './model/linearReg_ac_all_model.sav'
# outfilename = '../cache/db_ac_all/result_linearReg.csv'
# predict(filename,outfilename)
# pdb.set_trace()
print(reg.alpha_)
# print(reg.coef_)
plt.hist(reg.coef_[0][0:264], bins=50, color = 'burlywood')
# plt.xscale('log')
plt.xlabel('$\Delta_g G^o$')
plt.ylabel('Count')
plt.savefig('./figures/ridge_groups.png')
predicted = reg.predict(X)
mse = mean_squared_error(y, predicted)
r2 = r2_score(y, predicted)
print('Mean squared error: %.2f'
% mse)
# The coefficient of determination: 1 is perfect prediction
print('Coefficient of determination: %.4f'
% r2)
fig, ax = plt.subplots()
ax.scatter(y, predicted, color = 'burlywood')
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=1,)
ax.set_xlabel('Measured $\Delta_r G^o$')
ax.set_ylabel('Predicted $\Delta_r G^o$')
plt.figtext(.7, .2, "MSE = %.2f" % mse)
plt.figtext(.7, .25, "$R^2$ = %.4f" % r2)
plt.savefig('./figures/ridge_regression.png')
# plt.show()
def linear_regression_cc():
ac = loadmat('../cache/component_contribution_ac_all.mat')
S = ac['train_S']
G = ac['G']
b = ac['b']
# w = ac['w']
# pdb.set_trace()
m, n = S.shape
assert G.shape[0] == m
assert b.shape == (n, 1)
# Apply weighing
# W = np.diag(w.flat)
# Linear regression for the reactant layer (aka RC)
# inv_S, r_rc, P_R_rc, P_N_rc = LINALG._invert_project(S * W)
P_R_rc = ac['P_R_rc']
P_N_rc = ac['P_N_rc']
XR = np.dot(P_R_rc,S)
XN = np.dot(P_N_rc,S)
XNTG = np.dot(XN.T,G)
# X = STG
X = np.concatenate((XR.T,XNTG),1)
y = b.flatten()
reg = LinearRegression(fit_intercept=False).fit(X, y)
filename = './model/linearReg_ac_all_cc_model.sav'
pickle.dump(reg, open(filename, 'wb'))
outfilename = '../cache/db_ac_all/result_linearReg_cc.csv'
predict_cc(filename,outfilename)
def test_decompse_rxn():
molecular_signature = json.load(open('../cache/db_ac_all/decompose_vector_ac.json'))
molsigs = pd.DataFrame.from_dict(molecular_signature).fillna(0)
reactions_dict = json.load(open('../examples/optstoic_v3_Sji_dict.json'))
reaction = reactions_dict['R00713']
x, g = decompose_reaction(reaction,molsigs)
# zeros = np.zeros((1, 44))
# g = np.concatenate((g.T, zeros),1)
ac = loadmat('../cache/component_contribution_ac_all.mat')
dg = float(x.T*ac['dG0_cc'] + g.T*ac['dG0_gc'])
print dg
# X = np.concatenate((x.T, g.T),1)
# filename = './model/linearReg_ac_all_cc_model.sav'
# loaded_model = pickle.load(open(filename, 'rb'))
# ymean = loaded_model.predict(X)
# print ymean
pdb.set_trace()
def decompose_reaction(reaction,molsigs):
ac = loadmat('../cache/component_contribution_ac_all.mat')
cids = list(ac['cids'])
G = ac['G']
# calculate the reaction stoichiometric vector and the group incidence
# vector (x and g)
Nc = len(cids)
x = np.matrix(np.zeros((Nc, 1)))
x_prime = []
G_prime = []
for compound_id, coeff in reaction.iteritems():
if compound_id in cids:
i = cids.index(compound_id)
x[i, 0] = coeff
else:
# Decompose the compound and calculate the 'formation energy'
# using the group contributions.
# Note that the length of the group contribution vector we get
# from CC is longer than the number of groups in "groups_data"
# since we artifically added fictive groups to represent all the
# non-decomposable compounds. Therefore, we truncate the
# dG0_gc vector since here we only use GC for compounds which
# are not in cids_joined anyway.
x_prime.append(coeff)
vector = molsigs['compound_id'].tolist()
group_vec = np.array(vector)
G_prime.append(group_vec)
if x_prime != []:
g = np.matrix(x_prime) * np.vstack(G_prime)
else:
g = np.matrix(np.zeros((1, 1)))
g.resize((G.shape[1], 1))
return x, g
def compare_coeff():
ac = loadmat('../cache/component_contribution_ac_all.mat')
dG_gc = ac['dG0_gc']
filename = './model/linearReg_ac_all_cc_model.sav'
loaded_model = pickle.load(open(filename, 'rb'))
result = {}
result['MATLAB'] = dG_gc.flatten()
result['sklearn'] = loaded_model.coef_
pdb.set_trace()
df_result = pd.DataFrame.from_dict(result)
df_result.to_csv('../cache/db_ac_all/compare_coeff_cc.csv')
def ridge_all_data():
ac = loadmat('../cache/component_contribution_ac_all.mat')
S = ac['train_S']
G = ac['G']
b = ac['b']
# w = ac['w']
# pdb.set_trace()
m, n = S.shape
assert G.shape[0] == m
assert b.shape == (n, 1)
STG = np.dot(S.T,G)
X = STG
y = b.flatten()
# clf = Ridge(alpha=0.1,fit_intercept=False)
# clf.fit(X, y)
# print('R2',clf.score(X, y))
# print clf.coef_
reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True)
reg.fit(X,y)
print reg.coef_
# conv = reg.sigma_
# conv_coeff = [conv[i][i] for i in range(len(conv))]
# for num in conv_coeff[0:263]:
# if num < 500: print num
# pdb.set_trace()
filename = './model/bayesianRL_ac_all_model.sav'
pickle.dump(reg, open(filename, 'wb'))
def get_rxn_rule():
"""calculate reaction rules based on the relaxed molecular signatures.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
Returns
-------
None
All of the reaction rules are saved in files (csv file)
"""
reaction_dict = json.load(open('../examples/optstoic_v3_Sji_dict.json'))
molecular_signature = json.load(open('../cache/db_ac_all/decompose_vector_ac.json'))
molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0)
all_mets = molsigna_df.columns.tolist()
all_mets.append("C00080")
all_mets.append("C00282")
rule_df = pd.DataFrame(index=molsigna_df.index)
for rid, value in reaction_dict.items():
# skip the reactions with missing metabolites
mets = value.keys()
flag = False
for met in mets:
if met not in all_mets:
flag = True
break
if flag: continue
rule_df[rid] = 0
for met, stoic in value.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df[rid] += molsigna_df[met] * stoic
rule_df.to_csv("../cache/db_ac_all/relaxed_rule.csv", index=True)
def remove_duplicate():
"""Remove duplicated reaction rules from the all the rules generated from
reactions directly.
Returns
-------
None
A new csv file is created to store the informaiton of unique reaction
rules.
"""
df = (
pd.read_csv("../cache/db_ac_all/relaxed_rule.csv", index_col=0)
.T.drop_duplicates()
.T
)
df.to_csv("../cache/db_ac_all/relaxed_rule_noduplic.csv", index=True)
def remove_reversedRule():
"""in addition to remove the same rules, the reversed rules should also be
removed. Note that this function is not well implemented because the loop is
time consuming.
Returns
-------
None
A new csv file is created to store the informaiton of unique reaction
rules.
"""
# #
df = (
pd.read_csv("../cache/db_ac_all/relaxed_rule_noduplic.csv", index_col=0)
)
unique = []
duplicate = []
for col in df.columns.values:
same_rules = getIdenticalRule(df, col)
if len(same_rules) == 1:
unique.append(col)
else:
same_rules.sort()
if same_rules in duplicate:
continue
else:
duplicate.append(same_rules)
for sublist in duplicate:
unique.append(sublist[0])
new_df = df[unique]
new_df.to_csv("./data/relaxed_rule_noduplic_v2.csv", index=True)
def predict(filename,outfilename):
# filename = './model/bayesianRL_ac_all_model.sav'
# outfilename = '../cache/db_ac_all/result.csv'
loaded_model = pickle.load(open(filename, 'rb'))
df = (
pd.read_csv("../cache/db_ac_all/relaxed_rule_noduplic.csv", index_col=0)
)
# rule_list = df['R04734'].tolist()
rule_vec = df.to_numpy().T
m, n = rule_vec.shape
zeros = np.zeros((m, 44))
# rule_vec = np.asarray(rule_list)
# pdb.set_trace()
# X = np.concatenate([rule_vec,zeros])
X = np.concatenate((rule_vec,zeros),1)
# X = X.reshape(1,-1)
# pdb.set_trace()
# ymean, ystd = loaded_model.predict(X, return_std=True)
ymean = loaded_model.predict(X)
rxns = df.columns.tolist()
# print(ymean)
# print(ystd)
result = {}
result['reaction'] = rxns
result['dG'] = ymean
# result['dG_std'] = ystd
df_result = pd.DataFrame.from_dict(result)
df_result.to_csv(outfilename)
def predict_cc(filename,outfilename):
# filename = './model/bayesianRL_ac_all_model.sav'
# outfilename = '../cache/db_ac_all/result.csv'
loaded_model = pickle.load(open(filename, 'rb'))
df = (
pd.read_csv("../cache/db_ac_all/relaxed_rule_noduplic.csv", index_col=0)
)
# rule_list = df['R04734'].tolist()
rule_vec = df.to_numpy().T
m, n = rule_vec.shape
zeros = np.zeros((m, 44))
# rule_vec = np.asarray(rule_list)
# pdb.set_trace()
# X = np.concatenate([rule_vec,zeros])
X = np.concatenate((rule_vec,zeros),1)
# X = X.reshape(1,-1)
# pdb.set_trace()
# ymean, ystd = loaded_model.predict(X, return_std=True)
ymean = loaded_model.predict(X)
rxns = df.columns.tolist()
# print(ymean)
# print(ystd)
result = {}
result['reaction'] = rxns
result['dG'] = ymean
# result['dG_std'] = ystd
df_result = pd.DataFrame.from_dict(result)
df_result.to_csv(outfilename)
def change_direction():
df = (
pd.read_csv("../cache/db_ac_all/relaxed_rule_noduplic.csv", index_col=0)
)
df_dG = pd.read_csv('../cache/db_ac_all/result.csv', index_col='reaction')
dG = df_dG['dG'].to_dict()
for rxn,value in dG.iteritems():
if value > 0:
df[rxn] = -1*df[rxn]
df_new = df.T.drop_duplicates().T
df_new.to_csv("../cache/db_ac_all/relaxed_rule_noduplic_v2.csv", index=True)
# df.to_csv("../cache/db_ac_all/relaxed_rule_noduplic_negative.csv", index=True)
def predict_v2():
filename = './model/bayesianRL_ac_all_model.sav'
loaded_model = pickle.load(open(filename, 'rb'))
df = (
pd.read_csv("../cache/db_ac_all/relaxed_rule_noduplic_v2.csv", index_col=0)
)
# rule_list = df['R04734'].tolist()
rule_vec = df.to_numpy().T
m, n = rule_vec.shape
zeros = np.zeros((m, 44))
# rule_vec = np.asarray(rule_list)
# pdb.set_trace()
# X = np.concatenate([rule_vec,zeros])
X = np.concatenate((rule_vec,zeros),1)
# X = X.reshape(1,-1)
# pdb.set_trace()
ymean, ystd = loaded_model.predict(X, return_std=True)
rxns = df.columns.tolist()
# print(ymean)
# print(ystd)
result = {}
result['reaction'] = rxns
result['dG'] = ymean
result['dG_std'] = ystd
df_result = pd.DataFrame.from_dict(result)
df_result.to_csv('../cache/db_ac_all/result_v2.csv')
def get_dG0_prime():
ccache = CompoundCacher()
df = pd.read_csv('../cache/db_ac_all/result.csv',index_col='reaction')
reactions_dict = json.load(open('../examples/optstoic_v3_Sji_dict.json'))
pH = 7
I = 0.1
T = 298.15
ddG0s = []
for rxn in df.index.tolist():
rxn_dict = reactions_dict[rxn]
ddG0 = get_transform_ddG0(rxn_dict, ccache, pH, I, T)
ddG0s.append(ddG0)
df['ddG0'] = ddG0s
df.to_csv('../cache/db_ac_all/result_v3.csv')
def get_transform_ddG0(rxn_dict, ccache, pH, I, T):
"""
needed in order to calculate the transformed Gibbs energies of
reactions.
Returns:
The difference between DrG0_prime and DrG0 for this reaction.
Therefore, this value must be added to the chemical Gibbs
energy of reaction (DrG0) to get the transformed value.
"""
ddG0_forward = 0
for compound_id, coeff in rxn_dict.iteritems():
comp = ccache.get_compound(compound_id)
ddG0_forward += coeff * comp.transform_pH7(pH, I, T)
return ddG0_forward
def find_identical_rule():
# rule = 'R00713' # CAR enzyme
# rule = 'R01857' # zero changes
# rule = 'R09281' # alcohol hodrogynase
# rule = 'R01163'
# rule = 'R03012'
# rule = 'R05336'
rule = 'R05804'
df = pd.read_csv("../cache/db_ac_all/relaxed_rule.csv", index_col=0)
identical_reactions = {}
identical_reactions['forward'] = []
identical_reactions['reverse'] = []
for col in df.columns.values:
if df[col].equals(df[rule]):
# print col
identical_reactions['forward'].append(col)
for col in df.columns.values:
if df[col].equals(-df[rule]):
# print col
identical_reactions['reverse'].append(col)
print identical_reactions
print len(identical_reactions['forward']) + len(identical_reactions['reverse'])
if __name__ == '__main__':
# linear_regression_cc()
# test_decompse_rxn()
# ridge_all_data()
# get_rxn_rule()
# remove_duplicate()
# remove_reversedRule()
# predict()
# change_direction()
# predict_v2()
# find_identical_rule()
# compare_coeff()
# get_dG0_prime()
linear_regression()
# ridge_regression()