-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathmax_product_subarray.py
67 lines (55 loc) · 1.81 KB
/
max_product_subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Find the contiguous subarray within an array
(containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.
"""
from functools import reduce
def max_product(nums):
"""
:type nums: List[int]
:rtype: int
"""
lmin = lmax = gmax = nums[0]
for i in range(len(nums)):
t1 = nums[i] * lmax
t2 = nums[i] * lmin
lmax = max(max(t1, t2), nums[i])
lmin = min(min(t1, t2), nums[i])
gmax = max(gmax, lmax)
'''
Another approach that would print max product and the subarray
Examples:
subarray_with_max_product([2,3,6,-1,-1,9,5])
#=> max_product_so_far: 45, [-1, -1, 9, 5]
subarray_with_max_product([-2,-3,6,0,-7,-5])
#=> max_product_so_far: 36, [-2, -3, 6]
subarray_with_max_product([-4,-3,-2,-1])
#=> max_product_so_far: 24, [-4, -3, -2, -1]
subarray_with_max_product([-3,0,1])
#=> max_product_so_far: 1, [1]
'''
def subarray_with_max_product(arr):
''' arr is list of positive/negative numbers '''
l = len(arr)
product_so_far = max_product_end = 1
max_start_i = 0
so_far_start_i = so_far_end_i = 0
all_negative_flag = True
for i in range(l):
max_product_end *= arr[i]
if arr[i] > 0:
all_negative_flag = False
if max_product_end <= 0:
max_product_end = arr[i]
max_start_i = i
if product_so_far <= max_product_end:
product_so_far = max_product_end
so_far_end_i = i
so_far_start_i = max_start_i
if all_negative_flag:
print("max_product_so_far: %s, %s" %
(reduce(lambda x, y: x * y, arr), arr))
else:
print("max_product_so_far: %s, %s" %
(product_so_far, arr[so_far_start_i:so_far_end_i + 1]))