-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests_ch03.py
266 lines (216 loc) · 7.8 KB
/
tests_ch03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import matplotlib.pyplot as plt
import numpy as np
from skimage import io
import spatial_filters as sf
def test_negative(dir_name, filename):
filename = os.path.join(dir_name, filename)
image = io.imread(filename)
fig = plt.figure("Original vs. Negative")
fig.add_subplot(1, 2, 1)
plt.imshow(image, cmap="gray")
sf.negative(image)
fig.add_subplot(1, 2, 2)
plt.imshow(image, cmap="gray")
plt.show()
def test_logarithm(dir_name, filename):
filename = os.path.join(dir_name, filename)
image = io.imread(filename)
fig = plt.figure("Original vs. Negative")
fig.add_subplot(1, 2, 1)
plt.imshow(image, cmap="gray")
sf.log_transform(image)
fig.add_subplot(1, 2, 2)
plt.imshow(image, cmap="gray")
plt.show()
def test_gamma(dir_name, filename):
filename = os.path.join(dir_name, filename)
image = io.imread(filename)
fig = plt.figure("Original vs. Negative")
fig.add_subplot(1, 2, 1)
plt.imshow(image, cmap="gray")
p_image = sf.power_transform(image, 1, 0.4)
fig.add_subplot(1, 2, 2)
plt.imshow(p_image, cmap="gray")
plt.show()
def test_histogram(dir_name, filename):
filename = os.path.join(dir_name, filename)
image = io.imread(filename)
fig = plt.figure("Image vs Histogram")
fig.add_subplot(1, 2, 1)
plt.imshow(image, cmap="gray")
fig.add_subplot(1, 2, 2)
hist = sf.histogram(image)
x_pos = np.arange(len(hist))
plt.bar(x_pos, hist, width=1.0)
plt.show()
def test_histogram_equalization(dir_name, filename):
filename = os.path.join(dir_name, filename)
image = io.imread(filename)
fig = plt.figure("Histogram Equalization")
ax = fig.add_subplot(2, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(2, 2, 2)
ax.set_title("Original Histogram")
hist = sf.histogram(image)
x_pos = np.arange(len(hist))
plt.bar(x_pos, hist, width=1.0)
eq_image = sf.histogram_equalization(image)
ax = fig.add_subplot(2, 2, 3)
ax.set_title("Equalized Image")
plt.imshow(eq_image, cmap="gray")
ax = fig.add_subplot(2, 2, 4)
ax.set_title("Equalized Histogram")
hist = sf.histogram(image)
x_pos = np.arange(len(hist))
plt.bar(x_pos, hist, width=1.0)
plt.show()
def test_bit_plane_slicing(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Bit Plane Slicing")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Bit Plane")
plane = sf.bit_plane_slicing(image, [0, 0, 0, 0, 1, 1, 1, 1])
plt.imshow(plane, cmap="gray")
plt.show()
def test_contrast_stretching(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Contrast Streching")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Contrast enhanced image")
sf.contrast_stretching(image, (128, 55), (168, 255))
plt.imshow(image, cmap="gray")
plt.show()
def test_local_histogram_equalization(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Local Histogram Equalization")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Equalized Image")
sf.local_equalization(image)
plt.imshow(image, cmap="gray")
plt.show()
def test_average(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Blur filter")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Blured")
kernel = np.array([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
])
plane = sf.convolve_average(image, kernel)
plt.imshow(plane, cmap="gray")
plt.show()
def test_median(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Blur filter")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Blured")
kernel = np.array([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
])
plane = sf.convolve_median(image, kernel)
plt.imshow(plane, cmap="gray")
plt.show()
def test_laplace(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Border detection")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Laplace")
plane = sf.convolve_laplace(image)
plt.imshow(plane, cmap="gray")
plt.show()
def test_highboost(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Border detection")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("HighBoost Image")
plane = sf.highboost_filter(image.astype(np.float))
plt.imshow(plane, cmap="gray")
plt.show()
def test_sobel_x(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Border detection")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Sobel")
plane = sf.convolve_sobel_x(image)
plt.imshow(plane, cmap="gray")
plt.show()
def test_sobel_y(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Border detection")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Sobel")
plane = sf.convolve_sobel_y(image)
plt.imshow(plane, cmap="gray")
plt.show()
def test_enhanced_borders_sobel(dirname, filename):
filename = os.path.join(dirname, filename)
image = io.imread(filename)
fig = plt.figure("Border detection")
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
plt.imshow(image, cmap="gray")
ax = fig.add_subplot(1, 2, 2)
ax.set_title("Sobel")
plane = sf.enhance_borders_sobel(image)
plt.imshow(plane, cmap="gray")
plt.show()
def test_batch_CH03():
# dir_name = "/home/marcosfe/Documents/PhotoTops/DIP3E_CH03"
dir_name = "C:\\Users\\MarcosFelipe\\Documents\\PhotoTops\\DIP3E_CH03"
test_negative(dir_name,"Fig0304(a)(breast_digital_Xray).tif")
test_logarithm(dir_name, "Fig0305(a)(DFT_no_log).tif")
test_gamma(dir_name, "Fig0307(a)(intensity_ramp).tif")
test_bit_plane_slicing(dir_name, "Fig0314(a)(100-dollars).tif")
test_contrast_stretching(dir_name, "Fig0312(a)(kidney).tif")
test_histogram(dir_name, "Fig0316(1)(top_left).tif")
test_histogram_equalization(dir_name, "Fig0309(a)(washed_out_aerial_image).tif")
test_local_histogram_equalization(dir_name, "Fig0326(a)(embedded_square_noisy_512).tif")
test_average(dir_name, "Fig0333(a)(test_pattern_blurring_orig).tif")
test_median(dir_name, "Fig0335(a)(ckt_board_saltpep_prob_pt05).tif")
test_highboost(dir_name, "Fig0340(a)(dipxe_text).tif")
test_laplace(dir_name, "Fig0338(a)(blurry_moon).tif")
test_sobel_x(dir_name, "Fig0338(a)(blurry_moon).tif")
test_sobel_y(dir_name, "Fig0338(a)(blurry_moon).tif")
test_enhanced_borders_sobel(dir_name, "Fig0338(a)(blurry_moon).tif")