-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain2_train.py
168 lines (136 loc) · 7.74 KB
/
main2_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 4 21:38:39 2018
@author: Meg_94
"""
from time import time as time_time
start_time = time_time()
from matplotlib import use as mpl_use
mpl_use('Agg') # Issues warning on spyder - don't worry abt it
from os import path as os_path, mkdir as os_mkdir, chdir as os_chdir
os_chdir(os_path.dirname(os_path.abspath(__file__)))
from sys import path as sys_path
# insert at 1, 0 is the script path (or '' in REPL)
sys_path.insert(1, './functions_py3/')
from yaml import load as yaml_load, dump as yaml_dump, Loader as yaml_Loader
from argparse import ArgumentParser as argparse_ArgumentParser
from testClassi import test_classi
from trainClassi import train_classi
from feat_extract import feature_extract
from read_complexes import read_complexes
from read_pp_graph import write_graph_stats_neig_lists
from logging import basicConfig as logging_basicConfig, INFO as logging_INFO, DEBUG as logging_DEBUG
from pickle import dump as pickle_dump, load as pickle_load
import networkx
def main():
parser = argparse_ArgumentParser("Input parameters")
parser.add_argument("--input_file_name", default="input_toy.yaml", help="Input parameters file name")
parser.add_argument("--out_dir_name", default="/results", help="Output directory name")
parser.add_argument("--train_test_files_dir", default="", help="Train test file path")
parser.add_argument("--graph_files_dir", default="", help="Graph files' folder path")
parser.add_argument("--split_flag", help="Train test split to do")
parser.add_argument("--classifier_file", help="classifier file")
parser.add_argument("--train_feat_mat", help="Train feat mat")
parser.add_argument("--test_feat_mat", help="Test feat mat")
parser.add_argument("--scale_factor", help="No. of times negatives are greater than positives")
parser.add_argument("--neg_sample_meth", help="Method for sampling negatives - uniform / same")
parser.add_argument("--mode", help="Generate feature matrices or not")
args = parser.parse_args()
with open(args.input_file_name, 'r') as f:
inputs = yaml_load(f, yaml_Loader)
# Override output directory name if same as gen
if args.out_dir_name or inputs['out_comp_nm'] == "/results/res":
if not os_path.exists(inputs['dir_nm'] + args.out_dir_name):
os_mkdir(inputs['dir_nm'] + args.out_dir_name)
inputs['out_comp_nm'] = args.out_dir_name + "/res"
inputs['train_test_files_dir'] = ''
if args.train_test_files_dir:
if not os_path.exists(inputs['dir_nm'] + args.train_test_files_dir):
os_mkdir(inputs['dir_nm'] + args.train_test_files_dir)
inputs['train_test_files_dir'] = args.train_test_files_dir
inputs['graph_files_dir'] = ''
if args.graph_files_dir:
if not os_path.exists(inputs['dir_nm'] + args.graph_files_dir):
os_mkdir(inputs['dir_nm'] + args.graph_files_dir)
inputs['graph_files_dir'] = args.graph_files_dir
# Override split flag and mode if present
if args.split_flag:
inputs['split_flag'] = int(args.split_flag)
if args.mode:
inputs['mode'] = args.mode
if args.classifier_file:
inputs['classifier_file'] = args.classifier_file
if args.train_feat_mat:
inputs['train_feat_mat'] = args.train_feat_mat
if args.test_feat_mat:
inputs['test_feat_mat'] = args.test_feat_mat
if args.scale_factor:
inputs['scale_factor'] = int(args.scale_factor)
if args.neg_sample_meth:
inputs['neg_sample_method'] = args.neg_sample_meth
with open(inputs['dir_nm'] + inputs['out_comp_nm'] + "_input.yaml", 'w') as outfile:
yaml_dump(inputs, outfile, default_flow_style=False)
logging_basicConfig(filename=inputs['dir_nm'] + inputs['out_comp_nm'] + "_logs.yaml", level=logging_INFO)
myGraphName = inputs['dir_nm'] + inputs['graph_files_dir']+ "/res_myGraph"
with open(myGraphName, 'rb') as f:
myGraph = pickle_load(f)
start_time_read_c = time_time()
known_complex_nodes_list, complex_graphs, test_complex_graphs, prot_list, test_known_complex_nodes_list, train_known_complex_nodes_list = read_complexes(inputs, myGraph)
read_time_c = time_time() - start_time_read_c
if inputs['mode'] == 'gen' and inputs['use_full'] == 0:
# Write the correct reduced graph to file the first time you read complexes (i.e before generating featmats)
myGraph = myGraph.subgraph(prot_list)
with open(myGraphName, 'wb') as f:
pickle_dump(myGraph, f)
write_graph_stats_neig_lists(myGraph,inputs)
known_complex_nodes_listfname = inputs['dir_nm'] + "/res_known_complex_nodes_list"
with open(known_complex_nodes_listfname, 'wb') as f:
pickle_dump(known_complex_nodes_list, f)
train_known_complex_nodes_listfname = inputs['dir_nm'] + inputs['train_test_files_dir'] + "/res_train_known_complex_nodes_list"
with open(train_known_complex_nodes_listfname, 'wb') as f:
pickle_dump(train_known_complex_nodes_list, f)
test_known_complex_nodes_listfname = inputs['dir_nm'] + inputs['train_test_files_dir']+ "/res_test_known_complex_nodes_list"
with open(test_known_complex_nodes_listfname, 'wb') as f:
pickle_dump(test_known_complex_nodes_list, f)
protlistfname = inputs['dir_nm'] + inputs['train_test_files_dir']+ "/res_protlist"
with open(protlistfname, 'wb') as f:
pickle_dump(prot_list, f)
out_comp_nm = inputs['dir_nm'] + inputs['out_comp_nm']
if inputs['split_flag'] == 0:
start_time_feat = time_time()
max_size_train, max_size_test, X_pos_test, X_neg_test, X_test, y_test, X_pos, y_pos, X, y, X_neg, y_neg = feature_extract(
inputs, complex_graphs, test_complex_graphs, myGraph)
feat_time = time_time() - start_time_feat
max_size_trainF = inputs['dir_nm']+ inputs['train_test_files_dir'] + "/res_max_size_train"
max_size_testF = inputs['dir_nm'] + inputs['train_test_files_dir']+ "/res_max_size_test"
with open(max_size_trainF, 'wb') as f:
pickle_dump(max_size_train, f)
with open(max_size_testF, 'wb') as f:
pickle_dump(max_size_test, f)
if inputs['mode'] == 'non_gen':
start_time_train = time_time()
model, scaler = train_classi(inputs['model_name'], inputs, X_pos, y_pos, X, y, X_neg, y_neg)
train_time = time_time() - start_time_train
modelfname = out_comp_nm + "_model"
scalerfname = out_comp_nm + "_scaler"
with open(modelfname, 'wb') as f:
pickle_dump(model, f)
with open(scalerfname, 'wb') as f:
pickle_dump(scaler, f)
start_time_test = time_time()
test_classi(model, scaler, inputs, X_pos_test, X_neg_test, test_complex_graphs, X_test, y_test)
test_time = time_time() - start_time_test
tot_time = time_time() - start_time
# Write to yaml file instead
with open(out_comp_nm + '_runtime_performance.out', "a") as fid:
print("--- Runtime performance ---", file=fid)
print("Read complexes time (s) = ", read_time_c, "[", round(100 * float(read_time_c) / tot_time, 2),
"%]", file=fid)
print("Feature extraction time (s) = ", feat_time, "[", round(100 * float(feat_time) / tot_time, 2),
"%]", file=fid)
print("Train time (s) = ", train_time, "[", round(100 * float(train_time) / tot_time, 2), "%]",
file=fid)
print("Test time (s) = ", test_time, "[", round(100 * float(test_time) / tot_time, 2), "%]", file=fid)
print("Total time (s) = ", tot_time, file=fid)
if __name__ == '__main__':
main()