-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cifar.py
233 lines (211 loc) · 10.6 KB
/
train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import torch
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from pathlib import Path
import random
import datetime
import time
import os
from models.ema import WeightEMA
from models.utils import get_model
from data import get_data
from funcs import train, test, evaluate, get_lc_params
from utils import save_config
# arg parse
parser = argparse.ArgumentParser(description='re-sln training')
parser.add_argument('--dataset_name', type=str, choices=["cifar10", "cifar100", "clothing1m"], help='name of the dataset', required=True)
parser.add_argument('--batch_size', type=int, default=128, help='batch size for sgd', required=True)
parser.add_argument('--n_epochs', type=int, default=300, help='number of epochs to train for', required=True)
parser.add_argument('--lr', type=float, default=0.001, help='learning rate of optimizer', required=True)
parser.add_argument('--noise_mode', type=str, choices=['sym', 'asym', 'openset', 'dependent'], help='noise mode', required=True)
parser.add_argument('--p', type=float, default=0.4, help='noise rate', required=True)
parser.add_argument('--custom_noise', dest='custom_noise', action='store_true', default=False, help='whether to use custom noise',)
parser.add_argument('--make_new_custom_noise', dest='make_new_custom_noise', action='store_true', default=False, help='whether to generate new custom noise')
parser.add_argument('--sigma', type=float, help='std of Gaussian noise of optimizer', required=True)
parser.add_argument('--mo', dest='mo', action='store_true', default=False, help='whether to use momentum model')
parser.add_argument('--lc_n_epoch', type=int, default=250, help='label correction starts at this epoch (if -1, no lc)', required=True)
parser.add_argument('--seed', type=int, default=0, help='random seed (default: 0, experiments done with 123)', required=True)
datapath = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data")
if __name__ == "__main__":
# args parse
args = parser.parse_args()
# cuda stuff
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'using {device} device')
if device == "cuda":
print(f"using {torch.cuda.device_count()} GPU(s)")
# reproducibility
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# data
print("preparing data")
train_dataset, _, indices_noisy, noise_rules, test_dataset = get_data(
dataset_name=args.dataset_name,
datapath=datapath,
noise_mode=args.noise_mode,
p=args.p,
custom_noise=args.custom_noise,
make_new_custom_noise=args.make_new_custom_noise,
seed=args.seed
)
# get number of classes
n_classes = len(list(train_dataset.class_to_idx.keys()))
# make targets one-hot (easier to handle in lc and sln), targets_one_hot used in lc
targets = train_dataset.targets
targets_one_hot, train_dataset.targets = np.eye(n_classes)[targets], np.eye(n_classes)[targets]
targets_test = test_dataset.targets
test_dataset.targets = np.eye(n_classes)[targets_test]
# train_dataloader is modified if lc is used
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=2)
# train_eval_dataloader is never modified, and is used to compute the loss weights for lc
train_eval_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=False, num_workers=2)
# test_dataloader is never modified (test dataset is not onehot yet?)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=2)
# get models for naive and ema (depends on dataset)
print("loading models")
model_name = "wrn-28-2" if args.dataset_name in ["cifar10", "cifar100"] else "MODEL_NAME_FOR_CLOTHING1M"
model = get_model(model_name=model_name, n_classes=n_classes, device=device)
# if multi gpu
if device == "cuda":
if 1 < torch.cuda.device_count():
model = torch.nn.DataParallel(model)
model.to(device)
# optimizer for model
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
# ema model (MO)
model_ema = get_model(model_name=model_name, n_classes=n_classes, device=device) if args.mo else None
if model_ema:
# no grads for model_ema
for param in model_ema.parameters():
param.detach_()
# if multi gpu
if device == "cuda":
if 1 < torch.cuda.device_count():
model_ema = torch.nn.DataParallel(model_ema)
model_ema.to(device)
# ema model optimizer
optimizer_ema = WeightEMA(model, model_ema, alpha=0.999)
else:
optimizer_ema = None
# logging and tensorboard stuff
datetime_now = datetime.datetime.now()
exp_id = f"exp_{datetime_now}"
writer = SummaryWriter(f"runs/{exp_id}/")
# experiment reporting
ce_cond = args.sigma == 0 and model_ema is None and args.lc_n_epoch == -1
sln_cond = 0 < args.sigma and model_ema is None and args.lc_n_epoch == -1
sln_mo_cond = 0 < args.sigma and model_ema and args.lc_n_epoch == -1
sln_mo_lc_cond = 0 < args.sigma and model_ema and 0 < args.lc_n_epoch < args.n_epochs
assert ce_cond or sln_cond or sln_mo_cond or sln_mo_lc_cond, "incorrect experiment, check arguemnts: sigma, mo, and lc_n_epoch"
exp_str = \
f'ce' if ce_cond else \
f'sln (sigma={args.sigma})' if sln_cond else \
f'sln_mo (sigma={args.sigma})' if sln_mo_cond else \
f'sln_mo_lc (sigma={args.sigma}, lc={args.lc_n_epoch})' if sln_mo_lc_cond else \
None
print(f"exp_id: {exp_id}\n{args.dataset_name}, {args.noise_mode} (p={args.p}), {'custom noise' if args.custom_noise else 'paper noise'}\n{exp_str}")
# save lossess and accuracies in lists
loss_epochs = []
loss_noisy_epochs = []
loss_clean_epochs = []
accuracy_epochs = []
loss_test_epochs = []
accuracy_test_epochs = []
# save config
save_config(
exp_id=exp_id,
dataset_name=args.dataset_name,
batch_size=args.batch_size,
n_epochs=args.n_epochs,
lr=args.lr,
noise_mode=args.noise_mode,
p=args.p,
custom_noise=args.custom_noise,
make_new_custom_noise=args.make_new_custom_noise,
sigma=args.sigma,
mo=args.mo,
lc_n_epoch=args.lc_n_epoch,
seed=args.seed
)
# start experiment
for n_epoch in range(1, args.n_epochs+1):
# label-correction
# if SLN-MO-LC model
if model_ema and 0 < args.lc_n_epoch and args.lc_n_epoch <= n_epoch:
# set sigma to 0, no more stochastic label noise as lc starts
args.sigma = 0
# keep targets one hot through lc
losses, softmaxes = \
get_lc_params(model_ema=model_ema, train_eval_dataloader=train_eval_dataloader, device=device, n_epoch=n_epoch, n_epochs=args.n_epochs)
# normalize to [0.0, 1.0]
weights = torch.reshape((losses - torch.min(losses)) / (torch.max(losses) - torch.min(losses)), (len(train_dataloader.dataset), 1))
weights = weights.numpy()
preds = np.argmax(softmaxes.numpy(), axis=1).tolist()
preds_one_hot = np.eye(n_classes)[preds]
# do lc and reload training data (targets_one_hot fixed variable from above)
targets_one_hot_lc = weights*targets_one_hot + (1-weights)*preds_one_hot
train_dataset.targets = targets_one_hot_lc
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=2)
# train
loss_epoch, accuracy_epoch, loss_noisy_epoch, loss_clean_epoch = train(
model=model,
device=device,
train_dataloader=train_dataloader,
optimizer=optimizer,
optimizer_ema=optimizer_ema,
sigma=args.sigma,
n_classes=n_classes,
n_epoch=n_epoch,
n_epochs=args.n_epochs,
indices_noisy=indices_noisy
)
# tensorboard stuff
writer.add_scalar("accuracy/train", accuracy_epoch, n_epoch)
writer.add_scalars('loss/train', {'all': loss_epoch,
'noisy': loss_noisy_epoch,
'clean': loss_clean_epoch}, n_epoch)
# append to lists
loss_epochs.append(loss_epoch)
loss_noisy_epochs.append(loss_noisy_epoch)
loss_clean_epochs.append(loss_clean_epoch)
accuracy_epochs.append(accuracy_epoch)
# if SLN-MO or SLN-MO-LC model, test with EMA model
if optimizer_ema:
loss_test, accuracy_test = test(
model=model_ema,
device=device,
test_dataloader=test_dataloader,
n_epoch=n_epoch,
n_epochs=args.n_epochs)
writer.add_scalar("loss/test", loss_test, n_epoch)
writer.add_scalar("accuracy/test", accuracy_test, n_epoch)
loss_test_epochs.append(loss_test)
accuracy_test_epochs.append(accuracy_test)
print(f"epoch={n_epoch}/{args.n_epochs}, loss_epoch={loss_epoch:.4f}, acc_epoch={accuracy_epoch:.4f}, "
f"loss_test={loss_test:.4f}, accuracy_test={accuracy_test:.4f}")
# if CE or SLN model, test with model
else:
loss_test, accuracy_test = test(
model=model,
device=device,
test_dataloader=test_dataloader,
n_epoch=n_epoch,
n_epochs=args.n_epochs)
writer.add_scalar("loss/test", loss_test, n_epoch)
writer.add_scalar("accuracy/test", accuracy_test, n_epoch)
loss_test_epochs.append(loss_test)
accuracy_test_epochs.append(accuracy_test)
print(f"epoch={n_epoch}/{args.n_epochs}, loss_epoch={loss_epoch:.4f}, acc_epoch={accuracy_epoch:.4f}, "
f"loss_test={loss_test:.4f}, accuracy_test={accuracy_test:.4f}")
# Call flush() method to make sure that all pending events have been written to disk
writer.flush()
# Saving model (and ema_model if exists)
model_save_path = Path(f"saved_models/{exp_id}/")
model_save_path.mkdir(parents=True, exist_ok=True)
torch.save(model.state_dict(), model_save_path / "model.pth")
if model_ema:
torch.save(model_ema.state_dict(), model_save_path / "model_ema.pth")
print(f"all models saved, experiment exp_id: {exp_id} completed")