-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
618 lines (442 loc) · 25.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
"""
Multiclass Queuing Network scheduling policy optimization using
Proximal Policy Optimization method with Approximating Martingale-Process variance reduction
PPO:
https://arxiv.org/abs/1707.06347 (by Schulman et al., 2017)
Generalized Advantage Estimation:
https://arxiv.org/pdf/1506.02438.pdf (by Schulman et al., 2017)
Approximating Martingale-Process Method (by Henderson, Glynn, 2002):
https://web.stanford.edu/~glynn/papers/2002/HendersonG02.pdf
"""
import ray # package for distributed computations
import numpy as np
from policy import Policy
from value_function import NNValueFunction
from utils import Logger, Scaler
import os
import argparse
import processingNetwork as pn
import random
import datetime
import copy
ray.init(temp_dir='/tmp/ray2')
MAX_ACTORS = 50 # max number of parallel simulations
def diag_dot(A, B):
# returns np.diag(np.dot(A, B))
return np.einsum("ij,ji->i", A, B)
def run_weights(network_id, weights_set, policy, scaler, cycles):
if scaler.initial_states_procedure == 'previous_iteration':
initial_state_0 = np.zeros(policy.get_obs_dim() + 1)
else:
initial_state_0 = np.zeros(policy.get_obs_dim())
episodes = len(weights_set)
remote_network = ray.remote(Policy)
simulators = [remote_network.remote(policy.get_obs_dim(), policy.get_act_dim(), policy.get_kl_targ(),
policy.get_hid1_mult()) for _ in range(episodes)]
res = []
ray.get([s.set_weights.remote(weights_set[i]) for i, s in enumerate(simulators)])
scaler_id = ray.put(scaler)
res.extend(ray.get([simulators[i].policy_performance_cycles.remote(network_id, scaler_id, initial_state_0, i, batch_num = cycles)
for i in range(episodes)]))
print('simulation is done')
average_cost_set = np.zeros(episodes)
ci_set = np.zeros(episodes)
for i in range(episodes):
average_cost_set[res[i][1]] = res[i][0]
ci_set[res[i][1]] = res[i][2]
print('Average cost: ', average_cost_set)
print('CI: ', ci_set)
return average_cost_set, ci_set
def run_policy(network_id, policy, scaler, logger, gamma,
policy_iter_num, skipping_steps, cycles_num, episodes, time_steps):
"""
Run given policy and collect data
:param network_id: queuing network structure and first-order info
:param policy: queuing network policy
:param scaler: normalization values
:param logger: metadata accumulator
:param gamma: discount factor
:param policy_iter_num: policy iteration
:param skipping_steps: number of steps when action does not change ("frame-skipping" technique)
:param episodes: number of parallel simulations (episodes)
:param time_steps: max time steps in an episode
:return: trajectories = (states, actions, rewards)
"""
total_steps = 0
action_optimal_sum = 0
total_zero_steps = 0
burn = 1
scale, offset = scaler.get()
'''
initial_states_set = random.sample(scaler.initial_states, k=episodes)
trajectories, total_steps, action_optimal_sum, total_zero_steps, array_actions = policy.run_episode(ray.get(network_id), scaler, time_steps, cycles_num, skipping_steps, initial_states_set[0])
'''
#### declare actors for distributed simulations of a current policy#####
remote_network = ray.remote(Policy)
simulators = [remote_network.remote(policy.get_obs_dim(),policy.get_act_dim(), policy.get_kl_targ(), policy.get_hid1_mult()) for _ in range(MAX_ACTORS)]
actors_per_run = episodes // MAX_ACTORS # do not run more parallel processes than number of cores
remainder = episodes - actors_per_run * MAX_ACTORS
weights = policy.get_weights() # get neural network parameters
ray.get([s.set_weights.remote(weights) for s in simulators]) # assign the neural network weights to all actors
######################################################
######### save neural network parameters to file ###########
file_weights = os.path.join(logger.path_weights, 'weights_'+str(policy_iter_num)+'.npy')
np.save(file_weights, weights)
##################
scaler_id = ray.put(scaler)
initial_states_set = random.sample(scaler.initial_states, k=episodes) # sample initial states for episodes
######### policy simulation ########################
accum_res = [] # results accumulator from all actors
trajectories = [] # list of trajectories
for j in range(actors_per_run):
accum_res.extend(ray.get([simulators[i].run_episode.remote(network_id, scaler_id, time_steps, cycles_num,
skipping_steps, initial_states_set[j*MAX_ACTORS+i]) for i in range(MAX_ACTORS)]))
if remainder>0:
accum_res.extend(ray.get([simulators[i].run_episode.remote(network_id, scaler_id, time_steps, cycles_num,
skipping_steps, initial_states_set[actors_per_run*MAX_ACTORS+i]) for i in range(remainder)]))
print('simulation is done')
for i in range(len(accum_res)):
trajectories.append(accum_res[i][0])
total_steps += accum_res[i][1] # total time-steps
action_optimal_sum += accum_res[i][2] # absolute number of actions consistent with the "optimal policy"
total_zero_steps += accum_res[i][3] # absolute number of states for which all actions are optimal
#################################################
optimal_ratio = action_optimal_sum / (total_steps * skipping_steps) # fraction of actions that are optimal
# fraction of actions that are optimal excluding transitions when all actions are optimal
pure_optimal_ratio = (action_optimal_sum - total_zero_steps)/ (total_steps * skipping_steps - total_zero_steps)
average_reward = np.mean(np.concatenate([t['rewards'] for t in trajectories]))
#### normalization of the states in data ####################
unscaled = np.concatenate([t['unscaled_obs'][:-burn] for t in trajectories])
if gamma < 1.0:
for t in trajectories:
t['observes'] = (t['unscaled_obs'] - offset[:-1]) * scale[:-1]
else:
for t in trajectories:
t['observes'] = (t['unscaled_obs'] - offset[:-1]) * scale[:-1]
z = t['rewards'] - average_reward
t['rewards'] = z
##################################################################
scaler.update_initial(np.hstack((unscaled, np.zeros(len(unscaled))[np.newaxis].T)))
########## results report ##########################
print('Average cost: ', -average_reward)
logger.log({'_AverageReward': -average_reward,
'Steps': total_steps,
'Zero steps':total_zero_steps,
'% of optimal actions': int(optimal_ratio * 1000) / 10.,
'% of pure optimal actions': int(pure_optimal_ratio * 1000) / 10.,
})
####################################################
return trajectories
def add_disc_sum_rew(trajectories, policy, network, gamma, lam, scaler, iteration):
"""
compute value function for further training of Value Neural Network
:param trajectory: simulated data
:param network: queuing network
:param policy: current policy
:param gamma: discount factor
:param lam: lambda parameter in GAE
:param scaler: normalization values
"""
start_time = datetime.datetime.now()
for trajectory in trajectories:
if iteration!=1:
values = trajectory['values']
observes = trajectory['observes']
unscaled_obs = trajectory['unscaled_obs']
###### compute expectation of the value function of the next state ###########
probab_of_actions = policy.sample(observes) # probability of choosing actions according to a NN policy
distr = np.array(probab_of_actions[0].T)
for ar_i in range(1, network.stations_num):
distr = [a * b for a in distr for b in np.array(probab_of_actions[ar_i].T)]
distr = np.array(distr).T
distr = distr / np.sum(distr, axis=1)[:, np.newaxis] # normalization
action_array = network.next_state_prob(unscaled_obs) # transition probabilities for fixed actions
# expectation of the value function for fixed actions
value_for_each_action_list = []
for act in action_array:
value_for_each_action_list.append(diag_dot(act, trajectory['values_set'].T))
value_for_each_action = np.vstack(value_for_each_action_list)
P_pi = diag_dot(distr, value_for_each_action) # expectation of the value function
##############################################################################################################
# # expectation of the value function w.r.t the actual actions in data
# distr_fir = np.eye(len(network.actions))[trajectory['actions_glob']]
#
# P_a = diag_dot(distr_fir, value_for_each_action)
# td-error computing
tds_pi = trajectory['rewards'] - values + gamma*P_pi[:, np.newaxis]
#tds_pi = trajectory['rewards'] # no control variate
# value function computing for futher neural network training
#TODO: ensure that gamma<1 works
if gamma < 1:
#advantages = discount(x=tds_pi, gamma=lam*gamma, v_last = tds_pi[-1]) - tds_pi + tds_a # advantage function
disc_sum_rew = discount(x=tds_pi, gamma= lam*gamma, v_last = tds_pi[-1]) + values
else:
#advantages = relarive_af(unscaled_obs, td_pi=tds_pi, td_act=tds_a, lam=lam) # advantage function
disc_sum_rew = relarive_af(unscaled_obs, td_pi=tds_pi, lam=lam) + values # value function
#disc_sum_rew = relarive_af(unscaled_obs, td_pi=tds_pi, lam=lam) # value function -- No CV
else:
if gamma < 1:
#advantages = discount(x=tds_pi, gamma=lam*gamma, v_last = tds_pi[-1]) - tds_pi + tds_a # advantage function
disc_sum_rew = discount(x=trajectory['rewards'], gamma= gamma, v_last = trajectory['rewards'][-1])
else:
#advantages = relarive_af(unscaled_obs, td_pi=tds_pi, td_act=tds_a, lam=lam) # advantage function
disc_sum_rew = relarive_af(trajectory['unscaled_obs'], td_pi=trajectory['rewards'], lam=1) # advantage function
#trajectory['advantages'] = np.asarray(advantages)
trajectory['disc_sum_rew'] = disc_sum_rew
end_time = datetime.datetime.now()
time_policy = end_time - start_time
print('add_disc_sum_rew time:', int((time_policy.total_seconds() / 60) * 100) / 100., 'minutes')
burn = 1
unscaled_obs = np.concatenate([t['unscaled_obs'][:-burn] for t in trajectories])
disc_sum_rew = np.concatenate([t['disc_sum_rew'][:-burn] for t in trajectories])
if iteration ==1:
scaler.update(np.hstack((unscaled_obs, disc_sum_rew)))
scale, offset = scaler.get()
observes = (unscaled_obs - offset[:-1]) * scale[:-1]
disc_sum_rew_norm = (disc_sum_rew - offset[-1]) * scale[-1]
if iteration ==1:
for t in trajectories:
t['observes'] = (t['unscaled_obs'] - offset[:-1]) * scale[:-1]
return observes, disc_sum_rew_norm
def discount(x, gamma, v_last):
""" Calculate discounted forward sum of a sequence at each point """
disc_array = np.zeros((len(x), 1))
disc_array[-1] = v_last
for i in range(len(x) - 2, -1, -1):
if x[i+1]!=0:
disc_array[i] = x[i] + gamma * disc_array[i + 1]
return disc_array
def relarive_af(unscaled_obs, td_pi, lam):
# return advantage function
disc_array = np.copy(td_pi)
sum_tds = 0
for i in range(len(td_pi) - 2, -1, -1):
if np.sum(unscaled_obs[i+1]) != 0:
sum_tds = td_pi[i+1] + lam * sum_tds
else:
sum_tds = 0
disc_array[i] += sum_tds
return disc_array
def add_value(trajectories, val_func, scaler, possible_states):
"""
# compute value function from the Value Neural Network
:param trajectory_whole: simulated data
:param val_func: Value Neural Network
:param scaler: normalization values
:param possible_states: transitions that are possible for the queuing network
"""
start_time = datetime.datetime.now()
scale, offset = scaler.get()
# approximate value function for trajectory_whole['unscaled_obs']
for trajectory in trajectories:
values = val_func.predict(trajectory['observes'])
trajectory['values'] = values / scale[-1] + offset[-1]
# approximate value function of the states where transitions are possible from trajectory_whole['unscaled_obs']
values_set = np.zeros(( len(possible_states)+1, len(trajectory['observes'])))
new_obs = (trajectory['unscaled_last'] - offset[:-1]) * scale[:-1]
values = val_func.predict(new_obs)
values = values / scale[-1] + offset[-1]
values_set[-1] = np.squeeze(values)
for count, trans in enumerate(possible_states):
new_obs =(trajectory['unscaled_last'] + trans - offset[:-1]) * scale[:-1]
values = val_func.predict(new_obs)
values = values / scale[-1] + offset[-1]
values_set[count] = np.squeeze(values)
trajectory['values_set'] = values_set.T
end_time = datetime.datetime.now()
time_policy = end_time - start_time
print('add_value time:', int((time_policy.total_seconds() / 60) * 100) / 100., 'minutes')
def build_train_set(trajectories, gamma, scaler):
"""
# data pre-processing for training
:param trajectory_whole: simulated data
:param scaler: normalization values
:return: data for further Policy and Value neural networks training
"""
for trajectory in trajectories:
values = trajectory['values']
unscaled_obs = trajectory['unscaled_obs']
###### compute expectation of the value function of the next state ###########
action_array = network.next_state_prob(unscaled_obs) # transition probabilities for fixed actions
# expectation of the value function for fixed actions
value_for_each_action_list = []
for act in action_array:
value_for_each_action_list.append(diag_dot(act, trajectory['values_set'].T))
value_for_each_action = np.vstack(value_for_each_action_list)
##############################################################################################################
# # expectation of the value function w.r.t the actual actions in data
distr_fir = np.eye(len(network.actions))[trajectory['actions_glob']]
P_a = diag_dot(distr_fir, value_for_each_action)
advantages = trajectory['rewards'] - values +gamma*P_a[:, np.newaxis]# gamma * np.append(values[1:], values[-1]), axis=0) #
trajectory['advantages'] = np.asarray(advantages)
start_time = datetime.datetime.now()
burn = 1
unscaled_obs = np.concatenate([t['unscaled_obs'][:-burn] for t in trajectories])
disc_sum_rew = np.concatenate([t['disc_sum_rew'][:-burn] for t in trajectories])
scale, offset = scaler.get()
actions = np.concatenate([t['actions'][:-burn] for t in trajectories])
advantages = np.concatenate([t['advantages'][:-burn] for t in trajectories])
observes = (unscaled_obs - offset[:-1]) * scale[:-1]
advantages = advantages / (advantages.std() + 1e-6) # normalize advantages
# ########## averaging value function estimations over all data ##########################
# states_sum = {}
# states_number = {}
# states_positions = {}
#
# for i in range(len(unscaled_obs)):
# if tuple(unscaled_obs[i]) not in states_sum:
# states_sum[tuple(unscaled_obs[i])] = disc_sum_rew[i]
# states_number[tuple(unscaled_obs[i])] = 1
# states_positions[tuple(unscaled_obs[i])] = [i]
#
# else:
# states_sum[tuple(unscaled_obs[i])] += disc_sum_rew[i]
# states_number[tuple(unscaled_obs[i])] += 1
# states_positions[tuple(unscaled_obs[i])].append(i)
#
# for key in states_sum:
# av = states_sum[key] / states_number[key]
# for i in states_positions[key]:
# disc_sum_rew[i] = av
# ########################################################################################
end_time = datetime.datetime.now()
time_policy = end_time - start_time
print('build_train_set time:', int((time_policy.total_seconds() / 60) * 100) / 100., 'minutes')
return observes, actions, advantages, disc_sum_rew
def log_batch_stats(observes, actions, advantages, disc_sum_rew, logger, episode):
# metadata tracking
time_total = datetime.datetime.now() - logger.time_start
logger.log({'_mean_act': np.mean(actions),
'_mean_adv': np.mean(advantages),
'_min_adv': np.min(advantages),
'_max_adv': np.max(advantages),
'_std_adv': np.var(advantages),
'_mean_discrew': np.mean(disc_sum_rew),
'_min_discrew': np.min(disc_sum_rew),
'_max_discrew': np.max(disc_sum_rew),
'_std_discrew': np.var(disc_sum_rew),
'_Episode': episode,
'_time_from_beginning_in_minutes': int((time_total.total_seconds() / 60) * 100) / 100.
})
# TODO: check shadow name
def main(network_id, num_policy_iterations, gamma, lam, kl_targ, batch_size, hid1_mult, episode_duration, cycles_num,
clipping_parameter, skipping_steps, initial_state_procedure):
"""
# Main training loop
:param: see ArgumentParser below
"""
obs_dim = ray.get(network_id).buffers_num
act_dim = ray.get(network_id).action_size_per_buffer
now = datetime.datetime.utcnow().strftime("%b-%d_%H-%M-%S") # create unique directories
time_start= datetime.datetime.now()
logger = Logger(logname=ray.get(network_id).network_name, now=now, time_start=time_start)
scaler = Scaler(obs_dim + 1, initial_state_procedure)
val_func = NNValueFunction(obs_dim, hid1_mult) # Value Neural Network initialization
policy = Policy(obs_dim, act_dim, kl_targ, hid1_mult) # Policy Neural Network initialization
# initialize as a random proportional policy
# scale, offset = scaler.get()
# initial_states_set = random.sample(scaler.initial_states, k=1)
# trajectories, total_steps, action_optimal_sum, total_zero_steps, action_distr = \
# policy.run_episode(ray.get(network_id), scaler, episode_duration, skipping_steps, initial_states_set[0],
# rpp=True)
# state_input = (trajectories['unscaled_obs'] - offset[:-1]) * scale[:-1]
# policy.initilize_rpp(state_input, action_distr)
############## creating set of initial states for episodes in simulations##########################
if initial_state_procedure=='empty':
x = np.zeros((50000, obs_dim), dtype= 'int8')
scaler.update_initial(x)
elif initial_state_procedure=='load':
x = np.load('x.npy')
scaler.update_initial(x.T)
elif initial_state_procedure!='previous_iteration':
policy_init = ray.get(network_id).policy_list(initial_state_procedure)
x = ray.get(network_id).simulate_episode(np.zeros(obs_dim, 'int8'), policy_init)
scaler.update_initial(x)
else:
run_policy(network_id, policy, scaler, logger, gamma, 0, skipping_steps, cycles_num=cycles_num, episodes=1, time_steps=episode_duration)
###########################################################################
iteration = 0 # count of policy iterations
weights_set = []
scaler_set = []
while iteration < num_policy_iterations:
# decrease clipping_range and learning rate
iteration += 1
alpha = 1. - iteration / num_policy_iterations
policy.clipping_range = max(0.01, alpha*clipping_parameter)
policy.lr_multiplier = max(0.05, alpha)
print('Clipping range is ', policy.clipping_range)
if iteration % 10 == 1:
weights_set.append(policy.get_weights())
scaler_set.append(copy.copy(scaler))
trajectories = run_policy(network_id, policy, scaler, logger, gamma, iteration, skipping_steps, cycles_num,
episodes=batch_size, time_steps=episode_duration) #simulation
add_value(trajectories, val_func, scaler,
ray.get(network_id).next_state_list) # add estimated values to episodes
observes, disc_sum_rew_norm = add_disc_sum_rew(trajectories, policy, ray.get(network_id), gamma, lam, scaler, iteration) # calculate values from data
val_func.fit(observes, disc_sum_rew_norm, logger) # update value function
add_value(trajectories, val_func, scaler,
ray.get(network_id).next_state_list) # add estimated values to episodes
observes, actions, advantages, disc_sum_rew = build_train_set(trajectories, gamma, scaler)
#scale, offset = scaler.get()
log_batch_stats(observes, actions, advantages, disc_sum_rew, logger, iteration) # add various stats
policy.update(observes, actions, np.squeeze(advantages), logger) # update policy
#print('V(0):', disc_sum_rew[0], val_func.predict([observes[0]])[0][0]/ scale[-1] + offset[-1])
logger.write(display=True) # write logger results to file and stdout
weights = policy.get_weights()
file_weights = os.path.join(logger.path_weights, 'weights_' + str(iteration) + '.npy')
np.save(file_weights, weights)
file_scaler = os.path.join(logger.path_weights, 'scaler_' + str(iteration) + '.npy')
scale, offset = scaler.get()
np.save(file_scaler, np.asarray([scale, offset]))
weights_set.append(policy.get_weights())
scaler_set.append(copy.copy(scaler))
performance_evolution_all, ci_all = run_weights(network_id, weights_set, policy, scaler,cycles = 10**6)
file_res = os.path.join(logger.path_weights, 'average_' + str(performance_evolution_all[-1]) + '+-' +str(ci_all[-1]) + '.txt')
file = open(file_res, "w")
for i in range(len(ci_all)):
file.write(str(performance_evolution_all[i])+'\n')
file.write('\n')
for i in range(len(ci_all)):
file.write(str(ci_all[i])+'\n')
logger.close()
policy.close_sess()
val_func.close_sess()
if __name__ == "__main__":
#A = [[-1, 1, 0], [0, -1, 0], [0, 0, -1]]
#D = [[1, 0, 1], [0, 1, 0]]
#alpha = [0.3, 0.0, 0.3]
#mu = [2.0, 1., 2.0]
# network = pn.ProcessingNetwork(A, D, alpha, mu, 'criss_cross')
start_time = datetime.datetime.now()
network = pn.ProcessingNetwork.from_name('criss_crossIH') # queuing network declaration
end_time = datetime.datetime.now()
time_policy = end_time - start_time
print('time of queuing network object creation:', int((time_policy.total_seconds() / 60) * 100) / 100., 'minutes')
network_id = ray.put(network)
parser = argparse.ArgumentParser(description=('Train policy for a queueing network '
'using Proximal Policy Optimizer'))
parser.add_argument('-n', '--num_policy_iterations', type=int, help='Number of policy iterations to run',
default = 200)
parser.add_argument('-g', '--gamma', type=float, help='Discount factor',
default = 1)
parser.add_argument('-l', '--lam', type=float, help='Lambda for Generalized Advantage Estimation',
default = 1)
parser.add_argument('-k', '--kl_targ', type=float, help='D_KL target value',
default = 0.003)
parser.add_argument('-b', '--batch_size', type=int, help='Number of episodes per training batch',
default = 50)
parser.add_argument('-m', '--hid1_mult', type=int, help='Size of first hidden layer for value and policy NNs',
default = 10)
parser.add_argument('-t', '--episode_duration', type=int, help='Number of time-steps per an episode',
default = 10**6)
parser.add_argument('-y', '--cycles_num', type=int, help='Number of cycles',
default = 5000)
parser.add_argument('-c', '--clipping_parameter', type=float, help='Initial clipping parameter',
default = 0.2)
parser.add_argument('-s', '--skipping_steps', type=int, help='Number of steps for which control is fixed',
default = 1)
parser.add_argument('-i', '--initial_state_procedure', type=str,
help='procedure of generation intial states. Options: previous_iteration, LBFS, load, FBFS, cmu-policy, empty',
default = 'empty')
args = parser.parse_args()
main(network_id, **vars(args))