You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Sep 11, 2023. It is now read-only.
in notebook 07, this line : hmm_4 = pyemma.msm.bayesian_hidden_markov_model(cluster.dtrajs, nstates=4, lag=1, dt_traj='1 ps', nsamples=50)
produces this error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[5], line 1
----> 1 hmm_4 = pyemma.msm.bayesian_hidden_markov_model(cluster.dtrajs, nstates=4, lag=1, dt_traj='1 ps', nsamples=50)
File ~/miniconda3/envs/emma/lib/python3.11/site-packages/pyemma/msm/api.py:1375, in bayesian_hidden_markov_model(dtrajs, nstates, lag, nsamples, reversible, stationary, connectivity, mincount_connectivity, separate, observe_nonempty, stride, conf, dt_traj, store_hidden, show_progress)
1217 r""" Bayesian Hidden Markov model estimate using Gibbs sampling of the posterior
1218
1219 Returns a :class:`BayesianHMSM` that contains
(...)
1368
1369 """
1370 bhmsm_estimator = _Bayes_HMSM(lag=lag, nstates=nstates, stride=stride, nsamples=nsamples, reversible=reversible,
1371 stationary=stationary,
1372 connectivity=connectivity, mincount_connectivity=mincount_connectivity,
1373 separate=separate, observe_nonempty=observe_nonempty,
1374 dt_traj=dt_traj, conf=conf, store_hidden=store_hidden, show_progress=show_progress)
-> 1375 return bhmsm_estimator.estimate(dtrajs)
File ~/miniconda3/envs/emma/lib/python3.11/site-packages/pyemma/_base/estimator.py:418, in Estimator.estimate(self, X, **params)
416 if params:
417 self.set_params(**params)
--> 418 self._model = self._estimate(X)
419 # ensure _estimate returned something
420 assert self._model is not None
File ~/miniconda3/envs/emma/lib/python3.11/site-packages/pyemma/msm/estimators/bayesian_hmsm.py:313, in BayesianHMSM._estimate(self, dtrajs)
304 else:
305 estimator = BayesianHMM.default(dtrajs, n_hidden_states=self.nstates, lagtime=self.lag,
306 n_samples=self.nsamples, stride=self.stride,
307 initial_distribution_prior=self.p0_prior,
(...)
310 stationary=self.stationary,
311 prior_submodel=True, separate=self.separate)
--> 313 estimator.fit(dtrajs, n_burn_in=0, n_thin=1, progress=progress)
314 model = estimator.fetch_model()
315 if self.show_progress:
File ~/miniconda3/envs/emma/lib/python3.11/site-packages/deeptime/base.py:417, in _ImmutableInputData.__call__(self, *args, **kwargs)
415 # here we invoke the immutable setting context manager.
416 with self:
--> 417 return self.fit_method(*args, **kwargs)
File ~/miniconda3/envs/emma/lib/python3.11/site-packages/deeptime/markov/hmm/_bayesian_hmm.py:610, in BayesianHMM.fit(self, data, n_burn_in, n_thin, progress, **kwargs)
608 # Collect data.
609 models = []
--> 610 for _ in progress(range(self.n_samples), desc="Drawing samples", leave=False):
611 # Run a number of Gibbs sampling updates to generate each sample.
612 for _ in range(n_thin):
613 self._update(sample_model, dtrajs_lagged_strided, temp_alpha, transition_matrix_prior,
614 initial_distribution_prior)
TypeError: ProgressCallback.__init__() got an unexpected keyword argument 'desc'
How to solve it?
The text was updated successfully, but these errors were encountered:
in notebook 07, this line :
hmm_4 = pyemma.msm.bayesian_hidden_markov_model(cluster.dtrajs, nstates=4, lag=1, dt_traj='1 ps', nsamples=50)
produces this error:
How to solve it?
The text was updated successfully, but these errors were encountered: