-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_vqvae.py
108 lines (100 loc) · 3.97 KB
/
train_vqvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import argparse
import ast
from src.trainers import VQVAETrainer
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=2, help="Random seed to use.")
parser.add_argument("--output_dir", help="Location for models.")
parser.add_argument("--model_name", help="Name of model.")
parser.add_argument("--training_ids", help="Location of file with training ids.")
parser.add_argument("--validation_ids", help="Location of file with validation ids.")
parser.add_argument(
"--spatial_dimension", default=3, type=int, help="Dimension of images: 2d or 3d."
)
parser.add_argument("--image_size", default=None, help="Resize images.")
parser.add_argument(
"--image_roi",
default=None,
help="Specify central ROI crop of inputs, as a tuple, with -1 to not crop a dimension.",
type=ast.literal_eval,
)
# model params
parser.add_argument("--vqvae_in_channels", default=1, type=int)
parser.add_argument("--vqvae_out_channels", default=1, type=int)
parser.add_argument("--vqvae_num_res_layers", default=3, type=int)
parser.add_argument(
"--vqvae_downsample_parameters",
default=((2, 4, 1, 1), (2, 4, 1, 1), (2, 4, 1, 1), (2, 4, 1, 1)),
type=ast.literal_eval,
)
parser.add_argument(
"--vqvae_upsample_parameters",
default=((2, 4, 1, 1, 0), (2, 4, 1, 1, 0), (2, 4, 1, 1, 0), (2, 4, 1, 1, 0)),
type=ast.literal_eval,
)
parser.add_argument("--vqvae_num_channels", default=[128, 128, 128, 256], type=ast.literal_eval)
parser.add_argument(
"--vqvae_num_res_channels", default=[128, 128, 128, 256], type=ast.literal_eval
)
parser.add_argument("--vqvae_num_embeddings", default=256, type=int)
parser.add_argument("--vqvae_embedding_dim", default=256, type=int)
parser.add_argument("--vqvae_decay", default=0.99, type=float)
parser.add_argument("--vqvae_commitment_cost", default=0.25, type=float)
parser.add_argument("--vqvae_epsilon", default=1e-5, type=float)
parser.add_argument("--vqvae_dropout", default=0.0, type=float)
parser.add_argument("--vqvae_ddp_sync", default=True, type=bool)
parser.add_argument("--vqvae_learning_rate", default=3e-4, type=float)
# training param
parser.add_argument("--batch_size", type=int, default=4, help="Training batch size.")
parser.add_argument("--n_epochs", type=int, default=300, help="Number of epochs to train.")
parser.add_argument(
"--eval_freq",
type=int,
default=10,
help="Number of epochs to between evaluations.",
)
parser.add_argument(
"--augmentation",
type=int,
default=1,
help="Use of augmentation, 1 (True) or 0 (False).",
)
parser.add_argument(
"--adversarial_weight",
type=float,
default=0.01,
help="Weight for adversarial component.",
)
parser.add_argument(
"--adversarial_warmup",
type=int,
default=0,
help="Warmup the learning rate of the adversarial component.",
)
parser.add_argument("--num_workers", type=int, default=8, help="Number of loader workers")
parser.add_argument(
"--cache_data",
type=int,
default=1,
help="Whether or not to cache data in dataloaders.",
)
parser.add_argument(
"--checkpoint_every",
type=int,
default=100,
help="Save a checkpoint every checkpoint_every epochs.",
)
parser.add_argument("--is_grayscale", type=int, default=0, help="Is data grayscale.")
parser.add_argument(
"--quick_test",
default=0,
type=int,
help="If True, runs through a single batch of the train and eval loop.",
)
args = parser.parse_args()
return args
# to run using DDP, run torchrun --nproc_per_node=1 --nnodes=1 --node_rank=0 train_ddpm.py --args
if __name__ == "__main__":
args = parse_args()
trainer = VQVAETrainer(args)
trainer.train(args)