forked from ZigEmbeddedGroup/microzig
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild.zig
979 lines (797 loc) · 33.7 KB
/
build.zig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
//! Some words on the build script here:
//! We cannot use a test runner here as we're building for freestanding.
//! This means we need to use addExecutable() instead of using
const std = @import("std");
const uf2 = @import("uf2");
////////////////////////////////////////
// MicroZig Gen 2 Interface //
////////////////////////////////////////
fn root() []const u8 {
return comptime (std.fs.path.dirname(@src().file) orelse ".");
}
const build_root = root();
const MicroZig = @This();
b: *std.Build,
self: *std.Build.Dependency,
/// Creates a new instance of the MicroZig build support.
///
/// This is necessary as we need to keep track of some internal state to prevent
/// duplicated work per firmware built.
pub fn init(b: *std.Build, dependency_name: []const u8) *MicroZig {
const mz = b.allocator.create(MicroZig) catch @panic("out of memory");
mz.* = MicroZig{
.b = b,
.self = b.dependency(dependency_name, .{}),
};
return mz;
}
/// This build script validates usage patterns we expect from MicroZig
pub fn build(b: *std.Build) !void {
const uf2_dep = b.dependency("uf2", .{});
const build_test = b.addTest(.{
.root_source_file = .{ .path = "build.zig" },
});
build_test.addAnonymousModule("uf2", .{
.source_file = .{ .cwd_relative = uf2_dep.builder.pathFromRoot("build.zig") },
});
const install_docs = b.addInstallDirectory(.{
.source_dir = build_test.getEmittedDocs(),
.install_dir = .prefix,
.install_subdir = "docs",
});
b.getInstallStep().dependOn(&install_docs.step);
// const backings = @import("test/backings.zig");
// const optimize = b.standardOptimizeOption(.{});
// const minimal = addEmbeddedExecutable(b, .{
// .name = "minimal",
// .source_file = .{
// .path = comptime root_dir() ++ "/test/programs/minimal.zig",
// },
// .backing = backings.minimal,
// .optimize = optimize,
// });
// const has_hal = addEmbeddedExecutable(b, .{
// .name = "has_hal",
// .source_file = .{
// .path = comptime root_dir() ++ "/test/programs/has_hal.zig",
// },
// .backing = backings.has_hal,
// .optimize = optimize,
// });
// const has_board = addEmbeddedExecutable(b, .{
// .name = "has_board",
// .source_file = .{
// .path = comptime root_dir() ++ "/test/programs/has_board.zig",
// },
// .backing = backings.has_board,
// .optimize = optimize,
// });
// const core_tests = b.addTest(.{
// .root_source_file = .{
// .path = comptime root_dir() ++ "/src/core.zig",
// },
// .optimize = optimize,
// });
// const test_step = b.step("test", "build test programs");
// test_step.dependOn(&minimal.inner.step);
// test_step.dependOn(&has_hal.inner.step);
// test_step.dependOn(&has_board.inner.step);
// test_step.dependOn(&b.addRunArtifact(core_tests).step);
}
/// The resulting binary format for the firmware file.
/// A lot of embedded systems don't use plain ELF files, thus we provide means
/// to convert the resulting ELF into other common formats.
pub const BinaryFormat = union(enum) {
/// [Executable and Linkable Format](https://en.wikipedia.org/wiki/Executable_and_Linkable_Format), the standard output from the compiler.
elf,
/// A flat binary, contains only the loaded portions of the firmware with an unspecified base offset.
bin,
/// The [Intel HEX](https://en.wikipedia.org/wiki/Intel_HEX) format, contains
/// an ASCII description of what memory to load where.
hex,
/// A [Device Firmware Upgrade](https://www.usb.org/sites/default/files/DFU_1.1.pdf) file.
dfu,
/// The [USB Flashing Format (UF2)](https://github.com/microsoft/uf2) designed by Microsoft.
uf2: uf2.FamilyId,
/// The [firmware format](https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/firmware-image-format.html) used by the [esptool](https://github.com/espressif/esptool) bootloader.
esp,
/// Custom option for non-standard formats.
custom: *Custom,
/// Returns the standard extension for the resulting binary file.
pub fn getExtension(format: BinaryFormat) []const u8 {
return switch (format) {
.elf => ".elf",
.bin => ".bin",
.hex => ".hex",
.dfu => ".dfu",
.uf2 => ".uf2",
.esp => ".bin",
.custom => |c| c.extension,
};
}
pub const Custom = struct {
/// The standard extension of the format.
extension: []const u8,
/// A function that will convert a given `elf` file into the custom output format.
///
/// The `*Custom` format is passed so contextual information can be obtained by using
/// `@fieldParentPtr` to provide access to tooling.
convert: *const fn (*Custom, elf: std.Build.LazyPath) std.Build.LazyPath,
};
const Enum = std.meta.Tag(BinaryFormat);
const Context = struct {
pub fn hash(self: @This(), fmt: BinaryFormat) u32 {
_ = self;
var hasher = std.hash.XxHash32.init(0x1337_42_21);
hasher.update(@tagName(fmt));
switch (fmt) {
.elf, .bin, .hex, .dfu, .esp => |val| {
if (@TypeOf(val) != void) @compileError("Missing update: Context.hash now requires special care!");
},
.uf2 => |family_id| hasher.update(@tagName(family_id)),
.custom => |custom| hasher.update(std.mem.asBytes(custom)),
}
return hasher.final();
}
pub fn eql(self: @This(), fmt_a: BinaryFormat, fmt_b: BinaryFormat, index: usize) bool {
_ = self;
_ = index;
if (@as(BinaryFormat.Enum, fmt_a) != @as(BinaryFormat.Enum, fmt_b))
return false;
return switch (fmt_a) {
.elf, .bin, .hex, .dfu, .esp => |val| {
if (@TypeOf(val) != void) @compileError("Missing update: Context.eql now requires special care!");
return true;
},
.uf2 => |a| (a == fmt_b.uf2),
.custom => |a| (a == fmt_b.custom),
};
}
};
};
/// The CPU model a target uses.
///
/// The CPUs usually require special care on how to do interrupts, and getting an entry point.
///
/// MicroZig officially only supports the CPUs listed here, but other CPUs might be provided
/// via the `custom` field.
pub const CpuModel = union(enum) {
avr5,
cortex_m0,
cortex_m0plus,
cortex_m3,
cortex_m4,
riscv32_imac,
custom: *const Cpu,
pub fn getDescriptor(model: CpuModel) *const Cpu {
return switch (@as(std.meta.Tag(CpuModel), model)) {
inline else => |tag| &@field(cpus, @tagName(tag)),
.custom => model.custom,
};
}
};
/// A cpu descriptor.
pub const Cpu = struct {
/// Display name of the CPU.
name: []const u8,
/// Source file providing startup code and memory initialization routines.
source_file: std.build.LazyPath,
/// The compiler target we use to compile all the code.
target: std.zig.CrossTarget,
};
/// A descriptor for memory regions in a microcontroller.
pub const MemoryRegion = struct {
/// The type of the memory region for generating a proper linker script.
kind: Kind,
offset: u64,
length: u64,
pub const Kind = union(enum) {
/// This is a (normally) immutable memory region where the code is stored.
flash,
/// This is a mutable memory region for data storage.
ram,
/// This is a memory region that maps MMIO devices.
io,
/// This is a memory region that exists, but is reserved and must not be used.
reserved,
/// This is a memory region used for internal linking tasks required by the board support package.
private: PrivateRegion,
};
pub const PrivateRegion = struct {
/// The name of the memory region. Will not have an automatic numeric counter and must be unique.
name: []const u8,
/// Is the memory region executable?
executable: bool,
/// Is the memory region readable?
readable: bool,
/// Is the memory region writable?
writeable: bool,
};
};
/// Defines a custom microcontroller.
pub const Chip = struct {
/// The display name of the controller.
name: []const u8,
/// (optional) link to the documentation/vendor page of the controller.
url: ?[]const u8 = null,
/// The cpu model this controller uses.
cpu: CpuModel,
/// The provider for register definitions.
register_definition: union(enum) {
/// Use `regz` to create a zig file from a JSON schema.
json: std.Build.LazyPath,
/// Use `regz` to create a json file from a SVD schema.
svd: std.Build.LazyPath,
/// Use `regz` to create a zig file from an ATDF schema.
atdf: std.Build.LazyPath,
/// Use the provided file directly as the chip file.
zig: std.Build.LazyPath,
},
/// The memory regions that are present in this chip.
memory_regions: []const MemoryRegion,
};
/// Defines a hardware abstraction layer.
pub const HardwareAbstractionLayer = struct {
/// Root source file for this HAL.
source_file: std.Build.LazyPath,
};
/// Provides a description of a board.
///
/// Boards provide additional information to a chip and HAL package.
/// For example, they can list attached peripherials, external crystal frequencies,
/// flash sizes, ...
pub const BoardDefinition = struct {
/// Display name of the board
name: []const u8,
/// (optional) link to the documentation/vendor page of the board.
url: ?[]const u8 = null,
/// Provides the root file for the board definition.
source_file: std.Build.LazyPath,
};
/// The linker script used to link the firmware.
pub const LinkerScript = union(enum) {
/// Auto-generated linker script derived from the memory regions of the chip.
generated,
/// Externally defined linker script.
source_file: std.build.LazyPath,
};
/// A compilation target for MicroZig. Provides information about the chip,
/// hal, board and so on.
///
/// This is used instead of `std.zig.CrossTarget` to define a MicroZig Firmware.
pub const Target = struct {
/// The preferred binary format of this MicroZig target. If `null`, the user must
/// explicitly give the `.format` field during a call to `getEmittedBin()` or installation steps.
preferred_format: ?BinaryFormat,
/// The chip this target uses,
chip: Chip,
/// Usually, embedded projects are single-threaded and single-core applications. Platforms that
/// support multiple CPUs should set this to `false`.
single_threaded: bool = true,
/// Determines whether the compiler_rt package is bundled with the application or not.
/// This should always be true except for platforms where compiler_rt cannot be built right now.
bundle_compiler_rt: bool = true,
/// (optional) Provides a default hardware abstraction layer that is used.
/// If `null`, no `microzig.hal` will be available.
hal: ?HardwareAbstractionLayer = null,
/// (optional) Provides description of external hardware and connected devices
/// like oscillators and such.
///
/// This structure isn't used by MicroZig itself, but can be utilized from the HAL
/// if present.
board: ?BoardDefinition = null,
/// (optional) Provide a custom linker script for the hardware or define a custom generation.
linker_script: LinkerScript = .generated,
/// (optional) Further configures the created firmware depending on the chip and/or board settings.
/// This can be used to set/change additional properties on the created `*Firmware` object.
configure: ?*const fn (host_build: *std.Build, *Firmware) void = null,
/// (optional) Post processing step that will patch up and modify the elf file if necessary.
binary_post_process: ?*const fn (host_build: *std.Build, std.Build.LazyPath) std.Build.LazyPath = null,
};
/// Options to the `addFirmware` function.
pub const FirmwareOptions = struct {
/// The name of the firmware file.
name: []const u8,
/// The MicroZig target that the firmware is built for. Either a board or a chip.
target: Target,
/// The optimization level that should be used. Usually `ReleaseSmall` or `Debug` is a good choice.
/// Also using `std.Build.standardOptimizeOption` is a good idea.
optimize: std.builtin.OptimizeMode,
/// The root source file for the application. This is your `src/main.zig` file.
source_file: std.Build.LazyPath,
// Overrides:
/// If set, overrides the `single_threaded` property of the target.
single_threaded: ?bool = null,
/// If set, overrides the `bundle_compiler_rt` property of the target.
bundle_compiler_rt: ?bool = null,
/// If set, overrides the `hal` property of the target.
hal: ?HardwareAbstractionLayer = null,
/// If set, overrides the `board` property of the target.
board: ?BoardDefinition = null,
/// If set, overrides the `linker_script` property of the target.
linker_script: ?LinkerScript = null,
};
/// Declares a new MicroZig firmware file.
pub fn addFirmware(
/// The MicroZig instance that should be used to create the firmware.
mz: *MicroZig,
/// The instance of the `build.zig` that is calling this function.
host_build: *std.Build,
/// Options that define how the firmware is built.
options: FirmwareOptions,
) *Firmware {
const micro_build = mz.self.builder;
const chip = &options.target.chip;
const cpu = chip.cpu.getDescriptor();
const maybe_hal = options.hal orelse options.target.hal;
const maybe_board = options.board orelse options.target.board;
const linker_script = options.linker_script orelse options.target.linker_script;
// TODO: let the user override which ram section to use the stack on,
// for now just using the first ram section in the memory region list
const first_ram = blk: {
for (chip.memory_regions) |region| {
if (region.kind == .ram)
break :blk region;
} else @panic("no ram memory region found for setting the end-of-stack address");
};
// On demand, generate chip definitions via regz:
const chip_source = switch (chip.register_definition) {
.json, .atdf, .svd => |file| blk: {
const regz_exe = mz.dependency("regz", .{ .optimize = .ReleaseSafe }).artifact("regz");
const regz_gen = host_build.addRunArtifact(regz_exe);
regz_gen.addArg("--schema"); // Explicitly set schema type, one of: svd, atdf, json
regz_gen.addArg(@tagName(chip.register_definition));
regz_gen.addArg("--output_path"); // Write to a file
const zig_file = regz_gen.addOutputFileArg("chip.zig");
regz_gen.addFileArg(file);
break :blk zig_file;
},
.zig => |src| src,
};
const config = host_build.addOptions();
config.addOption(bool, "has_hal", (maybe_hal != null));
config.addOption(bool, "has_board", (maybe_board != null));
config.addOption(?[]const u8, "board_name", if (maybe_board) |brd| brd.name else null);
config.addOption([]const u8, "chip_name", chip.name);
config.addOption([]const u8, "cpu_name", chip.name);
config.addOption(usize, "end_of_stack", first_ram.offset + first_ram.length);
const fw: *Firmware = host_build.allocator.create(Firmware) catch @panic("out of memory");
fw.* = Firmware{
.mz = mz,
.host_build = host_build,
.artifact = host_build.addExecutable(.{
.name = options.name,
.optimize = options.optimize,
.target = cpu.target,
.linkage = .static,
.root_source_file = .{ .cwd_relative = mz.self.builder.pathFromRoot("src/start.zig") },
}),
.target = options.target,
.output_files = Firmware.OutputFileMap.init(host_build.allocator),
.config = config,
.modules = .{
.microzig = micro_build.createModule(.{
.source_file = .{ .cwd_relative = micro_build.pathFromRoot("src/microzig.zig") },
.dependencies = &.{
.{
.name = "config",
.module = micro_build.createModule(.{ .source_file = config.getSource() }),
},
},
}),
.cpu = undefined,
.chip = undefined,
.board = null,
.hal = null,
.app = undefined,
},
};
errdefer fw.output_files.deinit();
fw.modules.chip = micro_build.createModule(.{
.source_file = chip_source,
.dependencies = &.{
.{ .name = "microzig", .module = fw.modules.microzig },
},
});
fw.modules.microzig.dependencies.put("chip", fw.modules.chip) catch @panic("out of memory");
fw.modules.cpu = micro_build.createModule(.{
.source_file = cpu.source_file,
.dependencies = &.{
.{ .name = "microzig", .module = fw.modules.microzig },
},
});
fw.modules.microzig.dependencies.put("cpu", fw.modules.cpu) catch @panic("out of memory");
if (maybe_hal) |hal| {
fw.modules.hal = micro_build.createModule(.{
.source_file = hal.source_file,
.dependencies = &.{
.{ .name = "microzig", .module = fw.modules.microzig },
},
});
fw.modules.microzig.dependencies.put("hal", fw.modules.hal.?) catch @panic("out of memory");
}
if (maybe_board) |brd| {
fw.modules.board = micro_build.createModule(.{
.source_file = brd.source_file,
.dependencies = &.{
.{ .name = "microzig", .module = fw.modules.microzig },
},
});
fw.modules.microzig.dependencies.put("board", fw.modules.board.?) catch @panic("out of memory");
}
fw.modules.app = host_build.createModule(.{
.source_file = options.source_file,
.dependencies = &.{
.{ .name = "microzig", .module = fw.modules.microzig },
},
});
const umm = mz.dependency("umm-zig", .{}).module("umm");
fw.modules.microzig.dependencies.put("umm", umm) catch @panic("out of memory");
fw.artifact.addModule("app", fw.modules.app);
fw.artifact.addModule("microzig", fw.modules.microzig);
fw.artifact.strip = false; // we always want debug symbols, stripping brings us no benefit on embedded
fw.artifact.single_threaded = options.single_threaded orelse fw.target.single_threaded;
fw.artifact.bundle_compiler_rt = options.bundle_compiler_rt orelse fw.target.bundle_compiler_rt;
switch (linker_script) {
.generated => {
fw.artifact.setLinkerScript(
generateLinkerScript(host_build, chip.*) catch @panic("out of memory"),
);
},
.source_file => |source| {
fw.artifact.setLinkerScriptPath(source);
},
}
if (options.target.configure) |configure| {
configure(host_build, fw);
}
return fw;
}
/// Configuration options for firmware installation.
pub const InstallFirmwareOptions = struct {
/// Overrides the output format for the binary. If not set, the standard preferred file format for the firmware target is used.
format: ?BinaryFormat = null,
};
/// Adds a new dependency to the `install` step that will install the `firmware` into the folder `$prefix/firmware`.
pub fn installFirmware(
/// The MicroZig instance that was used to create the firmware.
mz: *MicroZig,
/// The instance of the `build.zig` that should perform installation.
b: *std.Build,
/// The firmware that should be installed. Please make sure that this was created with the same `MicroZig` instance as `mz`.
firmware: *Firmware,
/// Optional configuration of the installation process. Pass `.{}` if you're not sure what to do here.
options: InstallFirmwareOptions,
) void {
std.debug.assert(mz == firmware.mz);
const install_step = addInstallFirmware(mz, b, firmware, options);
b.getInstallStep().dependOn(&install_step.step);
}
/// Creates a new `std.Build.Step.InstallFile` instance that will install the given firmware to `$prefix/firmware`.
///
/// **NOTE:** This does not actually install the firmware yet. You have to add the returned step as a dependency to another step.
/// If you want to just install the firmware, use `installFirmware` instead!
pub fn addInstallFirmware(
/// The MicroZig instance that was used to create the firmware.
mz: *MicroZig,
/// The instance of the `build.zig` that should perform installation.
b: *std.Build,
/// The firmware that should be installed. Please make sure that this was created with the same `MicroZig` instance as `mz`.
firmware: *Firmware,
/// Optional configuration of the installation process. Pass `.{}` if you're not sure what to do here.
options: InstallFirmwareOptions,
) *std.Build.Step.InstallFile {
const format = firmware.resolveFormat(options.format);
const basename = b.fmt("{s}{s}", .{
firmware.artifact.name,
format.getExtension(),
});
_ = mz;
return b.addInstallFileWithDir(firmware.getEmittedBin(format), .{ .custom = "firmware" }, basename);
}
/// Declaration of a firmware build.
pub const Firmware = struct {
const OutputFileMap = std.ArrayHashMap(BinaryFormat, std.Build.LazyPath, BinaryFormat.Context, false);
const Modules = struct {
app: *std.Build.Module,
cpu: *std.Build.Module,
chip: *std.Build.Module,
board: ?*std.Build.Module,
hal: ?*std.Build.Module,
microzig: *std.Build.Module,
};
// privates:
mz: *MicroZig,
host_build: *std.Build,
target: Target,
output_files: OutputFileMap,
// publics:
/// The artifact that is built by Zig.
artifact: *std.Build.Step.Compile,
/// The options step that provides `microzig.config`. If you need custom configuration, you can add this here.
config: *std.Build.Step.Options,
/// Declaration of the MicroZig modules used by this firmware.
modules: Modules,
/// Path to the emitted elf file, if any.
emitted_elf: ?std.Build.LazyPath = null,
/// Returns the emitted ELF file for this firmware. This is useful if you need debug information
/// or want to use a debugger like Segger, ST-Link or similar.
///
/// **NOTE:** This is similar, but not equivalent to `std.Build.Step.Compile.getEmittedBin`. The call on the compile step does
/// not include post processing of the ELF files necessary by certain targets.
pub fn getEmittedElf(firmware: *Firmware) std.Build.LazyPath {
if (firmware.emitted_elf == null) {
const raw_elf = firmware.artifact.getEmittedBin();
firmware.emitted_elf = if (firmware.target.binary_post_process) |binary_post_process|
binary_post_process(firmware.host_build, raw_elf)
else
raw_elf;
}
return firmware.emitted_elf.?;
}
/// Returns the emitted binary for this firmware. The file is either in the preferred file format for
/// the target or in `format` if not null.
///
/// **NOTE:** The file returned here is the same file that will be installed.
pub fn getEmittedBin(firmware: *Firmware, format: ?BinaryFormat) std.Build.LazyPath {
const actual_format = firmware.resolveFormat(format);
const gop = firmware.output_files.getOrPut(actual_format) catch @panic("out of memory");
if (!gop.found_existing) {
const elf_file = firmware.getEmittedElf();
const basename = firmware.host_build.fmt("{s}{s}", .{
firmware.artifact.name,
actual_format.getExtension(),
});
gop.value_ptr.* = switch (actual_format) {
.elf => elf_file,
.bin => blk: {
const objcopy = firmware.host_build.addObjCopy(elf_file, .{
.basename = basename,
.format = .bin,
});
break :blk objcopy.getOutput();
},
.hex => blk: {
const objcopy = firmware.host_build.addObjCopy(elf_file, .{
.basename = basename,
.format = .hex,
});
break :blk objcopy.getOutput();
},
.uf2 => |family_id| blk: {
const uf2_exe = firmware.mz.dependency("uf2", .{ .optimize = .ReleaseSafe }).artifact("elf2uf2");
const convert = firmware.host_build.addRunArtifact(uf2_exe);
convert.addArg("--family-id");
convert.addArg(firmware.host_build.fmt("0x{X:0>4}", .{@intFromEnum(family_id)}));
convert.addArg("--elf-path");
convert.addFileArg(elf_file);
convert.addArg("--output-path");
break :blk convert.addOutputFileArg(basename);
},
.dfu => buildConfigError(firmware.host_build, "DFU is not implemented yet. See https://github.com/ZigEmbeddedGroup/microzig/issues/145 for more details!", .{}),
.esp => buildConfigError(firmware.host_build, "ESP firmware image is not implemented yet. See https://github.com/ZigEmbeddedGroup/microzig/issues/146 for more details!", .{}),
.custom => |generator| generator.convert(generator, elf_file),
};
}
return gop.value_ptr.*;
}
pub const AppDependencyOptions = struct {
depend_on_microzig: bool = false,
};
/// Adds a regular dependency to your application.
pub fn addAppDependency(fw: *Firmware, name: []const u8, module: *std.Build.Module, options: AppDependencyOptions) void {
if (options.depend_on_microzig) {
module.dependencies.put("microzig", fw.modules.microzig) catch @panic("OOM");
}
fw.modules.app.dependencies.put(name, module) catch @panic("OOM");
}
pub fn addIncludePath(fw: *Firmware, path: std.Build.LazyPath) void {
fw.artifact.addIncludePath(path);
}
pub fn addSystemIncludePath(fw: *Firmware, path: std.Build.LazyPath) void {
fw.artifact.addSystemIncludePath(path);
}
pub fn addCSourceFile(fw: *Firmware, source: std.Build.Step.Compile.CSourceFile) void {
fw.artifact.addCSourceFile(source);
}
pub fn addOptions(fw: *Firmware, module_name: []const u8, options: *std.Build.OptionsStep) void {
fw.artifact.addOptions(module_name, options);
fw.modules.app.dependencies.put(
module_name,
fw.host_build.createModule(.{
.source_file = options.getOutput(),
}),
) catch @panic("OOM");
}
pub fn addObjectFile(fw: *Firmware, source: std.Build.LazyPath) void {
fw.artifact.addObjectFile(source);
}
fn resolveFormat(firmware: *Firmware, format: ?BinaryFormat) BinaryFormat {
if (format) |fmt| return fmt;
if (firmware.target.preferred_format) |fmt| return fmt;
buildConfigError(firmware.host_build, "{s} has no preferred output format, please provide one in the `format` option.", .{
firmware.target.chip.name,
});
}
};
pub const cpus = struct {
pub const avr5 = Cpu{
.name = "AVR5",
.source_file = .{ .path = build_root ++ "/src/cpus/avr5.zig" },
.target = std.zig.CrossTarget{
.cpu_arch = .avr,
.cpu_model = .{ .explicit = &std.Target.avr.cpu.avr5 },
.os_tag = .freestanding,
.abi = .eabi,
},
};
pub const cortex_m0 = Cpu{
.name = "ARM Cortex-M0",
.source_file = .{ .path = build_root ++ "/src/cpus/cortex-m.zig" },
.target = std.zig.CrossTarget{
.cpu_arch = .thumb,
.cpu_model = .{ .explicit = &std.Target.arm.cpu.cortex_m0 },
.os_tag = .freestanding,
.abi = .eabi,
},
};
pub const cortex_m0plus = Cpu{
.name = "ARM Cortex-M0+",
.source_file = .{ .path = build_root ++ "/src/cpus/cortex-m.zig" },
.target = std.zig.CrossTarget{
.cpu_arch = .thumb,
.cpu_model = .{ .explicit = &std.Target.arm.cpu.cortex_m0plus },
.os_tag = .freestanding,
.abi = .eabi,
},
};
pub const cortex_m3 = Cpu{
.name = "ARM Cortex-M3",
.source_file = .{ .path = build_root ++ "/src/cpus/cortex-m.zig" },
.target = std.zig.CrossTarget{
.cpu_arch = .thumb,
.cpu_model = .{ .explicit = &std.Target.arm.cpu.cortex_m3 },
.os_tag = .freestanding,
.abi = .eabi,
},
};
pub const cortex_m4 = Cpu{
.name = "ARM Cortex-M4",
.source_file = .{ .path = build_root ++ "/src/cpus/cortex-m.zig" },
.target = std.zig.CrossTarget{
.cpu_arch = .thumb,
.cpu_model = .{ .explicit = &std.Target.arm.cpu.cortex_m4 },
.os_tag = .freestanding,
.abi = .eabi,
},
};
pub const riscv32_imac = Cpu{
.name = "RISC-V 32-bit",
.source_file = .{ .path = build_root ++ "/src/cpus/riscv32.zig" },
.target = std.zig.CrossTarget{
.cpu_arch = .riscv32,
.cpu_model = .{ .explicit = &std.Target.riscv.cpu.sifive_e21 },
.os_tag = .freestanding,
.abi = .none,
},
};
};
fn buildConfigError(b: *std.Build, comptime fmt: []const u8, args: anytype) noreturn {
const msg = b.fmt(fmt, args);
@panic(msg);
}
fn dependency(mz: *MicroZig, name: []const u8, args: anytype) *std.Build.Dependency {
return mz.self.builder.dependency(name, args);
}
fn generateLinkerScript(b: *std.Build, chip: Chip) !std.Build.LazyPath {
const cpu = chip.cpu.getDescriptor();
var contents = std.ArrayList(u8).init(b.allocator);
const writer = contents.writer();
try writer.print(
\\/*
\\ * This file was auto-generated by microzig
\\ *
\\ * Target CPU: {[cpu]s}
\\ * Target Chip: {[chip]s}
\\ */
\\
// This is not the "true" entry point, but there's no such thing on embedded platforms
// anyways. This is the logical entrypoint that should be invoked when
// stack, .data and .bss are set up and the CPU is ready to be used.
\\ENTRY(microzig_main);
\\
\\
, .{
.cpu = cpu.name,
.chip = chip.name,
});
try writer.writeAll("MEMORY\n{\n");
{
var counters = [4]usize{ 0, 0, 0, 0 };
for (chip.memory_regions) |region| {
// flash (rx!w) : ORIGIN = 0x00000000, LENGTH = 512k
switch (region.kind) {
.flash => {
try writer.print(" flash{d} (rx!w)", .{counters[0]});
counters[0] += 1;
},
.ram => {
try writer.print(" ram{d} (rw!x)", .{counters[1]});
counters[1] += 1;
},
.io => {
try writer.print(" io{d} (rw!x)", .{counters[2]});
counters[2] += 1;
},
.reserved => {
try writer.print(" reserved{d} (rw!x)", .{counters[3]});
counters[3] += 1;
},
.private => |custom| {
try writer.print(" {s} (", .{custom.name});
if (custom.readable) try writer.writeAll("r");
if (custom.writeable) try writer.writeAll("w");
if (custom.executable) try writer.writeAll("x");
if (!custom.readable or !custom.writeable or !custom.executable) {
try writer.writeAll("!");
if (!custom.readable) try writer.writeAll("r");
if (!custom.writeable) try writer.writeAll("w");
if (!custom.executable) try writer.writeAll("x");
}
try writer.writeAll(")");
},
}
try writer.print(" : ORIGIN = 0x{X:0>8}, LENGTH = 0x{X:0>8}\n", .{ region.offset, region.length });
}
}
try writer.writeAll("}\n\nSECTIONS\n{\n");
{
try writer.writeAll(
\\ .text :
\\ {
\\ KEEP(*(microzig_flash_start))
\\ *(.text*)
\\ } > flash0
\\
\\
);
switch (cpu.target.getCpuArch()) {
.arm, .thumb => try writer.writeAll(
\\ .ARM.exidx : {
\\ *(.ARM.exidx* .gnu.linkonce.armexidx.*)
\\ } >flash0
\\
\\
),
else => {},
}
try writer.writeAll(
\\ .data :
\\ {
\\ microzig_data_start = .;
\\ *(.rodata*)
\\ *(.data*)
\\ microzig_data_end = .;
\\ } > ram0 AT> flash0
\\
\\ .bss (NOLOAD) :
\\ {
\\ microzig_bss_start = .;
\\ *(.bss*)
\\ microzig_bss_end = .;
\\ } > ram0
\\
\\ microzig_data_load_start = LOADADDR(.data);
\\
);
}
try writer.writeAll("}\n");
// TODO: Assert that the flash can actually hold all data!
// try writer.writeAll(
// \\
// \\ ASSERT( (SIZEOF(.text) + SIZEOF(.data) > LENGTH(flash0)), "Error: .text + .data is too large for flash!" );
// \\
// );
const write = b.addWriteFiles();
return write.add("linker.ld", contents.items);
}