-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpretation.py
165 lines (157 loc) · 5.89 KB
/
interpretation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os.path
from time import process_time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from scifAI.dl.custom_transforms import ShuffleChannel
from scifAI.dl.dataset import DatasetGenerator
from sklearn.metrics import f1_score
from torch.utils.data import DataLoader
from torchvision import transforms
def run_interpretation_method(
test_loader,
ablator,
output_path,
require_baseline=False,
require_sliding_window=False,
**kwargs,
):
heatmaps = torch.empty(0, dtype=torch.float32, device=kwargs["device"])
t1_start = process_time()
with torch.no_grad():
for data in test_loader:
inputs, labels = (
data[0].to(kwargs["device"]).float(),
data[1].to(kwargs["device"]).reshape(-1).long(),
)
if require_baseline:
baselines = torch.zeros(inputs.shape).to(kwargs["device"])
attr = ablator.attribute(inputs, target=labels, baselines=baselines)
elif require_sliding_window:
attr = ablator.attribute(
inputs,
target=labels,
sliding_window_shapes=kwargs["sliding_window_shapes"],
)
else:
attr = ablator.attribute(inputs, target=labels)
heatmaps = torch.cat(
(
heatmaps,
torch.from_numpy(
np.percentile(
torch.flatten(attr, start_dim=-2).cpu().numpy(),
q=50,
axis=-1,
)
).to(kwargs["device"]),
)
)
heatmaps_mean = torch.mean(heatmaps, dim=0)
plt.bar(kwargs["channel_names"], heatmaps_mean.cpu(), color="grey")
plt.savefig(os.path.join(output_path, str(ablator.get_name()) + ".png"))
t1_stop = process_time()
print("Elapsed time:", t1_stop, t1_start)
print("Elapsed time during the whole program in seconds:", t1_stop - t1_start)
return heatmaps_mean
def run_pxpermute(
metadata,
test_loader,
model,
output_path,
test_index,
test_transform,
label_map,
selected_channels,
scaling_factor,
reshape_size,
device,
num_classes,
num_channels,
batch_size=128,
num_workers=4,
**kwargs,
):
class_names = [c for c in label_map.keys()]
t1_start = process_time()
y_true = list()
y_pred = list()
with torch.no_grad():
for data in test_loader:
inputs, labels = data[0].to(device).float(), data[1].to(device).long()
outputs = model(inputs)
pred = outputs.argmax(dim=1)
_, predicted = torch.max(outputs.data, 1)
for i in range(len(pred)):
y_true.append(labels[i].item())
y_pred.append(pred[i].item())
f1_score_original = f1_score(
y_true, y_pred, average=None, labels=np.arange(num_classes)
)
min_mean_dif = 1.0
# candidate = 0
df_all = pd.DataFrame([], columns=class_names)
for c in range(num_channels):
f1_score_diff_from_original_per_channel_per_shuffle = []
transform = test_transform.copy()
transform.append(ShuffleChannel(channels_to_shuffle=[c]))
for s in range(kwargs["shuffle_times"]):
dataset = DatasetGenerator(
metadata=metadata.loc[test_index, :],
label_map=label_map,
selected_channels=selected_channels,
scaling_factor=scaling_factor,
reshape_size=reshape_size,
transform=transforms.Compose(transform),
)
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers
)
y_true = list()
y_pred = list()
with torch.no_grad():
for data in dataloader:
inputs, labels = (
data[0].to(device).float(),
data[1].to(device).reshape(-1).long(),
)
outputs = model(inputs)
pred = outputs.argmax(dim=1)
for i in range(len(pred)):
y_true.append(labels[i].item())
y_pred.append(pred[i].item())
f1_score_per_channel = f1_score(
y_true, y_pred, average=None, labels=np.arange(num_classes)
)
f1_score_diff_from_original_per_channel_per_shuffle.append(
f1_score_original - f1_score_per_channel
)
mean_along_columns = np.mean(
f1_score_diff_from_original_per_channel_per_shuffle, axis=0
)
mean_dif = np.mean(mean_along_columns)
if mean_dif < min_mean_dif and mean_dif > 0 and not selected_channels[c]:
min_mean_dif = mean_dif
# candidate = selected_channels[c]
df_diff = pd.DataFrame(
np.atleast_2d(f1_score_diff_from_original_per_channel_per_shuffle),
columns=class_names,
)
df_mean_diff = pd.DataFrame(
np.atleast_2d(mean_along_columns), columns=class_names
)
df_all = pd.concat([df_all, df_mean_diff], ignore_index=True, sort=False)
fig, ax = plt.subplots(figsize=(10, 5))
ax = df_diff.boxplot()
ax.set_xticklabels(class_names, rotation=45)
fig.savefig(os.path.join(output_path, f"pxpermute-{selected_channels[c]}.png"))
plt.bar(
np.asarray(kwargs["channel_names"])[selected_channels],
df_all.T.mean(),
color="Grey",
)
plt.savefig(os.path.join(output_path, "pixel-permutation-method-final.png"))
t1_stop = process_time()
print("Elapsed time:", t1_stop, t1_start)
print("Elapsed time during the whole program in seconds:", t1_stop - t1_start)