-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_al_ema.py
319 lines (268 loc) · 17.3 KB
/
train_al_ema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import argparse
from copy import deepcopy
import math
import numpy as np
import torch
import torch.nn as nn
from torch.optim import SGD, lr_scheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
from data.augmentations import get_transform
from data.get_datasets import get_datasets, get_class_splits
from utils_simgcd.general_utils_al import AverageMeter, init_experiment # NOTE!!!
from utils_simgcd.cluster_and_log_utils_al import log_accs_from_preds
from config import exp_root
from model import DINOHead_feature, info_nce_logits, SupConLoss, DistillLoss, ContrastiveLearningViewGenerator, get_params_groups # NOTE!!! DINOHead_feature not DINOHead
from query_strategies import strategy
from utils_al.handler import DataHandler, ImageNetDataHandler, CUBDataHandler, AircraftDataHandler, CarsDataHandler, Herbarium19DataHandler
from utils_al.al_data import AL_Data, AL_Data_ImageNet, AL_Data_CUB, AL_Data_Aircraft, AL_Data_Cars, AL_Data_Herb19
from utils_al.al_net import AL_Net
from utils_al.get_al_strategy import get_strategy
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Active Learning Training (fine-tuning)', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--eval_funcs', nargs='+', help='Which eval functions to use', default=['v2', 'v2p'])
parser.add_argument('--dataset_name', type=str, default='scars', help='options: cifar10, cifar100, imagenet_100, cub, scars, aircraft, herbarium_19')
# dataset labels NOTE!!!
parser.add_argument('--prop_train_labels', type=float, default=0.5)
parser.add_argument('--num_old_classes', type=int, default=-1)
parser.add_argument('--use_ssb_splits', action='store_true', default=True)
parser.add_argument('--grad_from_block', type=int, default=11)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-5)
parser.add_argument('--exp_root', type=str, default=exp_root)
parser.add_argument('--transform', type=str, default='imagenet')
parser.add_argument('--sup_weight', type=float, default=0.35)
parser.add_argument('--n_views', default=2, type=int)
parser.add_argument('--memax_weight', type=float, default=2)
parser.add_argument('--warmup_teacher_temp', default=0.07, type=float, help='Initial value for the teacher temperature.')
parser.add_argument('--teacher_temp', default=0.04, type=float, help='Final value (after linear warmup)of the teacher temperature.')
parser.add_argument('--warmup_teacher_temp_epochs', default=30, type=int, help='Number of warmup epochs for the teacher temperature.')
parser.add_argument('--logits_temp', default=0.1, type=float, help='temperature for logits') # NOTE!!!
# args for AL
parser.add_argument('--strategy', type=str, default=None, help='Active Learning: strategy')
parser.add_argument('--num_round', default=1, type=int, help='Active Learning: training rounds')
parser.add_argument('--adaptive_round', default=2, type=int, help='For Adaptive NovelMarginSamplingAdaptive, transfer from NovelSamplingRandom to NovelSampling (Entropy) at this round')
parser.add_argument('--num_query', default=100, type=int, help='Active Learning: number of query per round')
parser.add_argument('--base_exp_root', type=str, default='dev_outputs_base')
parser.add_argument('--base_ckpts_date', type=str, default=None, help='base (initial) checkpoints directories, e.g. 20231007-212237')
parser.add_argument('--base_exp_id', default=None, type=str)
parser.add_argument('--epochs', default=20, type=int, help='Active Learning training epochs per round')
parser.add_argument('--al_batch_size', default=128, type=int, help='bathc size for AL labeled data')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--al_weight', type=float, default=1)
parser.add_argument('--al_supcon_weight', type=float, default=1)
parser.add_argument('--al_cls_weight', type=float, default=1)
# ema
parser.add_argument('--ema_decay', type=float, default=0.9)
parser.add_argument('--print_freq', default=10, type=int)
parser.add_argument('--print_freq_al', default=5, type=int)
parser.add_argument('--exp_name', default=None, type=str)
parser.add_argument('--exp_id', default=None, type=str)
# ----------------------
# INIT
# ----------------------
args = parser.parse_args()
device = torch.device('cuda:0')
args = get_class_splits(args)
args.num_labeled_classes = len(args.train_classes)
args.num_unlabeled_classes = len(args.unlabeled_classes)
args.exp_root = 'dev_outputs_al_ema'
if args.num_round > 1:
args.exp_root = args.exp_root + '_' + str(args.num_round) + 'rounds'
args.exp_name = args.dataset_name + '_simgcd_al'
args.base_exp_id = 'old' + str(args.num_labeled_classes) + '_' + 'ratio' + str(args.prop_train_labels)
init_experiment(args, runner_name=['simgcd-al'], exp_id=args.exp_id)
args.logger.info('number of old and novel classes: (%d)-(%d)' % (args.num_labeled_classes, args.num_unlabeled_classes))
args.logger.info(f'Using evaluation function {args.eval_funcs[0]} to print results')
torch.backends.cudnn.benchmark = True
# ----------------------
# BASE MODEL
# ----------------------
args.interpolation = 3
args.crop_pct = 0.875
backbone = torch.hub.load('facebookresearch/dino:main', 'dino_vitb16')
backbone_ema = torch.hub.load('facebookresearch/dino:main', 'dino_vitb16')
# NOTE: Hardcoded image size as we do not finetune the entire ViT model
args.image_size = 224
args.feat_dim = 768
args.num_mlp_layers = 3
args.mlp_out_dim = args.num_labeled_classes + args.num_unlabeled_classes
# ----------------------
# HOW MUCH OF BASE MODEL TO FINETUNE
# ----------------------
for m in backbone.parameters():
m.requires_grad = False
# Only finetune layers from block 'args.grad_from_block' onwards
for name, m in backbone.named_parameters():
if 'block' in name:
block_num = int(name.split('.')[1])
if block_num >= args.grad_from_block:
m.requires_grad = True
for m in backbone_ema.parameters():
m.requires_grad = False
# Only finetune layers from block 'args.grad_from_block' onwards
for name, m in backbone_ema.named_parameters():
if 'block' in name:
block_num = int(name.split('.')[1])
if block_num >= args.grad_from_block:
m.requires_grad = True
args.logger.info('model build')
# --------------------
# CONTRASTIVE TRANSFORM
# --------------------
train_transform, test_transform = get_transform(args.transform, image_size=args.image_size, args=args)
train_transform = ContrastiveLearningViewGenerator(base_transform=train_transform, n_views=args.n_views)
# --------------------
# DATASETS
# --------------------
train_dataset, test_dataset, unlabelled_train_examples_test, datasets = get_datasets(args.dataset_name,
train_transform,
test_transform,
args)
# NOTE !!! ind_mapping dataset
train_dataset_ind_mapping = deepcopy(datasets['train_labelled'])
train_dataset_ind_mapping.transform = test_transform
# --------------------
# SAMPLER
# Sampler which balances labelled and unlabelled examples in each batch
# --------------------
label_len = len(train_dataset.labelled_dataset)
unlabelled_len = len(train_dataset.unlabelled_dataset)
sample_weights = [1 if i < label_len else label_len / unlabelled_len for i in range(len(train_dataset))]
sample_weights = torch.DoubleTensor(sample_weights)
sampler = torch.utils.data.WeightedRandomSampler(sample_weights, num_samples=len(train_dataset))
# --------------------
# DATALOADERS
# --------------------
train_loader = DataLoader(train_dataset, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=False,
sampler=sampler, drop_last=True, pin_memory=True)
test_loader_unlabelled = DataLoader(unlabelled_train_examples_test, num_workers=args.num_workers,
batch_size=256, shuffle=False, pin_memory=False)
test_loader_labelled = DataLoader(test_dataset, num_workers=args.num_workers,
batch_size=256, shuffle=False, pin_memory=False)
# ind_mapping dataset
train_labeled_loader_ind_mapping = DataLoader(train_dataset_ind_mapping, num_workers=args.num_workers,
batch_size=256, shuffle=False, pin_memory=False)
# ----------------------
# PROJECTION HEAD
# ----------------------
projector = DINOHead_feature(in_dim=args.feat_dim, out_dim=args.mlp_out_dim, nlayers=args.num_mlp_layers)
projector_ema = DINOHead_feature(in_dim=args.feat_dim, out_dim=args.mlp_out_dim, nlayers=args.num_mlp_layers)
model = nn.Sequential(backbone, projector).to(device)
model_ema = nn.Sequential(backbone_ema, projector_ema).to(device)
# load checkpoints from the base model
if args.base_ckpts_date is not None:
if args.base_exp_id is not None:
args.base_model_dir = os.path.join(args.base_exp_root, args.dataset_name, args.base_exp_id + '_' + args.base_ckpts_date, 'checkpoints', 'model.pt')
else:
args.base_model_dir = os.path.join(args.base_exp_root, args.dataset_name, args.base_ckpts_date, 'checkpoints', 'model.pt')
args.logger.info(f'Loading weights from {args.base_model_dir}')
ckpts = torch.load(args.base_model_dir)
ckpts = ckpts['model']
model.load_state_dict(ckpts)
print('Successfully load checkpoints.')
model_ema.load_state_dict(ckpts)
print('Successfully load checkpoints (ema).')
# detach ema params
for param in model_ema.parameters():
param.detach_()
# ----------------------
# Active Learning Settings
# ----------------------
al_source_dataset = deepcopy(unlabelled_train_examples_test)
#al_dataset = AL_Data(X_train=al_source_dataset.data, Y_train=al_source_dataset.targets, handler=DataHandler)
if args.dataset_name == 'cifar100' or args.dataset_name == 'cifar10':
al_dataset = AL_Data(X_train=al_source_dataset.data, Y_train=torch.LongTensor(al_source_dataset.targets), handler=DataHandler) # NOTE!!! LongTensor
elif args.dataset_name == 'imagenet_100':
al_dataset = AL_Data_ImageNet(Imgs=al_source_dataset.imgs, Samples=al_source_dataset.samples, Targets=al_source_dataset.targets,
Uq_idxs=al_source_dataset.uq_idxs, target_transform=al_source_dataset.target_transform, handler=ImageNetDataHandler) # NOTE!!! LongTensor
elif args.dataset_name == 'cub':
al_dataset = AL_Data_CUB(Data=al_source_dataset.data, Uq_idxs=al_source_dataset.uq_idxs, target_transform=al_source_dataset.target_transform, handler=CUBDataHandler)
elif args.dataset_name == 'scars':
al_dataset = AL_Data_Cars(Data=al_source_dataset.data, Target=al_source_dataset.target, Uq_idxs=al_source_dataset.uq_idxs, target_transform=al_source_dataset.target_transform, handler=CarsDataHandler)
elif args.dataset_name == 'aircraft':
al_dataset = AL_Data_Aircraft(Samples=al_source_dataset.samples, Uq_idxs=al_source_dataset.uq_idxs, target_transform=al_source_dataset.target_transform, handler=AircraftDataHandler)
elif args.dataset_name == 'herbarium_19':
al_dataset = AL_Data_Herb19(Samples=al_source_dataset.samples, Targets=al_source_dataset.targets,
Uq_idxs=al_source_dataset.uq_idxs, target_transform=al_source_dataset.target_transform, handler=Herbarium19DataHandler)
else:
al_dataset = AL_Data(X_train=al_source_dataset.data, Y_train=torch.LongTensor(al_source_dataset.targets), handler=DataHandler) # NOTE!!! LongTensor
al_net = AL_Net(net=model, net_ema=model_ema, args=args, device=device)
al_strategy = get_strategy(args.strategy)(al_dataset, train_loader, test_loader_labelled, test_loader_unlabelled,
None, train_labeled_loader_ind_mapping, al_net, train_transform, test_transform, args)
# evaluate before AL
args.logger.info('Evaluate before AL training...')
all_acc_initial, old_acc_initial, new_acc_initial, ind_map_test_initial = al_strategy.test()
# accuracy measure list
all_acc_round_list = []
old_acc_round_list = []
new_acc_round_list = []
# novelty measure list
coverage_round_list = []
ratio_round_list = []
entropy_round_list = []
# begin AL training of various rounds
for rd in range(1, args.num_round + 1):
args.logger.info('\n\nBegin Active Learning Round {}'.format(rd))
# query
query_idxs = al_strategy.query(args.num_query, rd)
# measure query acc
_, _, _, ind_map_test_ = al_strategy.al_net.test(al_strategy.original_test_loader, 'Test ACC')
al_strategy.measure_acc(query_idxs, ind_map_test_)
# update labels in unlabeled training data
al_strategy.update(query_idxs)
# metric the novelty of query
args.logger.info('Evaluating the novelty metrics on AL selected data (Current Round)...')
coverage_round, ratio_round, entropy_round, upper_bound_round = al_strategy.measure_novelty(query_idxs)
args.logger.info('Evaluating the novelty metrics on AL selected data (Overall across All Rounds)...')
coverage_overall, ratio_overall, entropy_overall, upper_bound_overall = al_strategy.measure_novelty_overall()
# train and evaluate
best_test_acc_all_round, best_test_acc_lab_round, best_test_acc_ubl_round = al_strategy.train(rd)
# logs of current round
all_acc_round_list.append(best_test_acc_all_round)
old_acc_round_list.append(best_test_acc_lab_round)
new_acc_round_list.append(best_test_acc_ubl_round)
coverage_round_list.append(coverage_round)
ratio_round_list.append(ratio_round)
entropy_round_list.append(entropy_round)
# state dict:
save_round_name = 'state_at_the_end_of_round{}.pt'.format(rd)
save_round_path = os.path.join(args.model_dir, save_round_name)
labeled_idxs_, labeled_data_ = al_strategy.al_dataset.get_labeled_data(train_transform)
save_round_dict = {
'round': rd,
'labeled_idxs': labeled_idxs_,
'all_acc_round_list': all_acc_round_list,
'old_acc_round_list': old_acc_round_list,
'new_acc_round_list': new_acc_round_list,
'coverage_round_list': coverage_round_list,
'ratio_round_list': ratio_round_list,
'entropy_round_list': entropy_round_list,
}
args.logger.info('Saving the state of round {}...'.format(rd))
torch.save(save_round_dict, save_round_path)
# logger results of acc across whole AL process
args.logger.info('\n\nFinal results:')
args.logger.info('='*150)
args.logger.info('='*150)
args.logger.info(f'Initial Accuracies on test set before AL: All: {all_acc_initial:.4f} Old: {old_acc_initial:.4f} New: {new_acc_initial:.4f}')
for rd_ in range(0, args.num_round):
args.logger.info(f'Accuracies on test set at AL Round {rd_+1}: All: {all_acc_round_list[rd_]:.4f} Old: {old_acc_round_list[rd_]:.4f} New: {new_acc_round_list[rd_]:.4f}')
for rd_ in range(0, args.num_round):
args.logger.info(f'Novelty at AL Round {rd_+1}: Novel Coverage {coverage_round_list[rd_]:.4f} | Novel Ratio {ratio_round_list[rd_]:.4f} | Novel Entropy {entropy_round_list[rd_]:.4f} (upper bound {upper_bound_round:.4f})')
# overall novelty
args.logger.info(f'Novelty Overall: Novel Coverage {coverage_overall:.4f} | Novel Ratio {ratio_overall:.4f} | Novel Entropy {entropy_overall:.4f} (upper bound {upper_bound_round:.4f})')
# print info
print('='*150)
print('='*150)
print(f'Initial Accuracies on test set before AL: All: {all_acc_initial:.4f} Old: {old_acc_initial:.4f} New: {new_acc_initial:.4f}')
for rd_ in range(0, args.num_round):
print(f'Accuracies on test set at AL Round {rd_+1}: All: {all_acc_round_list[rd_]:.4f} Old: {old_acc_round_list[rd_]:.4f} New: {new_acc_round_list[rd_]:.4f}')
for rd_ in range(0, args.num_round):
print(f'Novelty at AL Round {rd_+1}: Novel Coverage {coverage_round_list[rd_]:.4f} | Novel Ratio {ratio_round_list[rd_]:.4f} | Novel Entropy {entropy_round_list[rd_]:.4f} (upper bound {upper_bound_round:.4f})')
# overall novelty
print(f'Novelty Overall: Novel Coverage {coverage_overall:.4f} | Novel Ratio {ratio_overall:.4f} | Novel Entropy {entropy_overall:.4f} (upper bound {upper_bound_round:.4f})')