This library contains code for fetching and processing option data from the Tehran Stock Exchange using various public APIs.
Check if Python is installed and available from the command line by running:
python3 --version # Unix/macOS
or
py --version # Windows
If you do not have Python, please install the latest 3.x version from python.org
python3 -m pip --version # Unix/macOS
or
py -m pip --version # Windows
If pip isn’t already installed, then first try to bootstrap it from the standard library:
python3 -m ensurepip --default-pip # Unix/macOS
or
py -m ensurepip --default-pip # Windows
Now that you have Python and pip set up, you can create a virtual environment. Navigate to your project directory and run the following command:
python3 -m venv venv # Unix/macOS
or
py -m venv venv # Windows
Next, you need to activate the virtual environment:
source venv/bin/activate # Unix/macOS
or
venv\Scripts\activate # Windows
After activation, your command prompt should change to indicate that you are now working within the virtual environment.
python3 -m pip install --upgrade pip setuptools wheel # Unix/macOS
or
py -m pip install --upgrade pip setuptools wheel # Windows
Use the package manager pip to install tseopt
.
pip install tseopt
Fetches all Bourse and FaraBours data (suitable for screening the total market).
from tseopt import get_all_options_data
entire_option_market_data = get_all_options_data()
print(entire_option_market_data.head(5))
print(entire_option_market_data.iloc[0])
import pandas as pd
from tseopt.use_case.screen_market import OptionMarket, convert_to_billion_toman
option_market = OptionMarket(entire_option_market_data=entire_option_market_data)
print(f"total_trade_value: {option_market.total_trade_value / 1e10:.0f} B Toman", end="\n\n")
most_trade_value_calls = pd.DataFrame(option_market.most_trade_value.get("call"))
most_trade_value_calls['ticker'] = most_trade_value_calls['ticker'].astype(str)
most_trade_value_calls["trades_value"] = convert_to_billion_toman(most_trade_value_calls["trades_value"])
most_trade_value_puts = pd.DataFrame(option_market.most_trade_value.get("put"))
most_trade_value_puts['ticker'] = most_trade_value_puts['ticker'].astype(str)
most_trade_value_puts["trades_value"] = convert_to_billion_toman(most_trade_value_puts["trades_value"])
most_trade_value_by_underlying_asset = pd.DataFrame(option_market.most_trade_value_by_underlying_asset)
most_trade_value_by_underlying_asset[["call", "put", "total"]] =convert_to_billion_toman(most_trade_value_by_underlying_asset[["call", "put", "total"]])
print(most_trade_value_calls)
print(most_trade_value_puts)
print(most_trade_value_by_underlying_asset)
from tseopt.use_case.options_chains import Chains
chains = Chains(entire_option_market_data)
# Display underlying asset information to help select ua_tse_codes
print("Underlying Asset Information:")
print(chains.underlying_asset_info.head(5))
ua_tse_code = "17914401175772326" # اهرم
# Option types can be "call", "put", or "both"
options = chains.options(ua_tse_code=ua_tse_code, option_type="both")
date_chain = chains.make_date_chains(ua_tse_code=ua_tse_code, option_type="both")
strike_price_chain = chains.make_strike_price_chains(ua_tse_code=ua_tse_code, option_type="call")
display(options)
# strike_price_chain and date_chain are generators.
# If you're not familiar with generators (and if you're wondering what the heck they are!),
# uncomment the lines below to convert them to lists
# strike_price_chain = list(strike_price_chain)
# date_chain = list(date_chain)
for chain in date_chain:
name = chain.loc[0, "name"]
jalali_date = name.split("-")[2]
print("Date: ", jalali_date)
display(chain)
print("\n\n")
for chain in strike_price_chain:
print("Strike Price: ", chain.loc[0, "strike_price"])
display(chain)
print("\n\n")
from tseopt import fetch_historical_lob, take_lob_screenshot
jalali_date = "1403-10-24"
tse_code = "17091434834979599" # ضهرم1110
all_lob = fetch_historical_lob(tse_code=tse_code, jalali_date=jalali_date)
display(all_lob)
specific_time = "10:50"
lob = take_lob_screenshot(entire_data=all_lob, specific_time=specific_time)
display(lob)
Provides low latency and more detailed data (such as initial margin and order book). This may be suitable for obtaining data for actual trading.
from tseopt import tadbir_api
isin_list = ["IRO9AHRM2501", "IROATVAF0621", "IRO9BMLT2771", "IRO9TAMN8991", "IRO9IKCO81M1"]
bulk_data = tadbir_api.get_last_bulk_data(isin_list=isin_list)
detail_data = tadbir_api.get_detail_data(isin_list[0])
symbol_info = detail_data.get("symbol_info")
order_book = pd.DataFrame(detail_data.get("order_book"))
print(bulk_data)
print(symbol_info)
print(order_book)
Fetches all data which mercantile exchange website provides.
from tseopt import make_a_mercantile_data_object
md = make_a_mercantile_data_object()
md.update_data(timeout=20)
print(md.gavahi[0])
print(md.sandoq[0])
print(md.salaf[0])
print(md.future[0])
print(md.markets_info[0])
print(md.cdc[0])
print(md.all_market)
print(md.future_date_time)
English Word | Farsi Translation |
---|---|
ua_tse_code | کد نماد دارایی پایه |
ua_ticker | نماد معاملاتی دارایی پایه |
days_to_maturity | روزهای باقیمانده تا سررسید |
strike_price | قیمت اعمال |
contract_size | اندازه قرارداد |
ua_close_price | قیمت پایانی دارایی پایه |
ua_yesterday_price | قیمت روز گذشته دارایی پایه |
begin_date | تاریخ شروع قرارداد |
end_date | تاریخ سررسید قرارداد |
tse_code | کد نماد آپشن |
ticker | نماد معاملاتی آپشن |
trades_num | تعداد معاملات آپشن |
trades_volume | حجم معاملات آپشن |
trades_value | ارزش معاملات آپشن |
last_price | آخرین قیمت آپشن |
close_price | قیمت پایانی آپشن |
yesterday_price | قیمت روز گذشته آپشن |
open_positions | موقعیتهای باز |
yesterday_open_positions | موقعیتهای باز روز گذشته |
notional_value | ارزش اسمی |
bid_price | قیمت پیشنهادی خرید |
bid_volume | حجم پیشنهادی خرید |
ask_price | قیمت پیشنهادی فروش |
ask_volume | حجم پیشنهادی فروش |
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.