-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlosses.py
101 lines (74 loc) · 3.09 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
Define our custom loss function.
"""
from keras import backend as K
import tensorflow as tf
#import dill
def binary_focal_loss(gamma=2., alpha=.25):
"""
Binary form of focal loss.
FL(p_t) = -alpha * (1 - p_t)**gamma * log(p_t)
where p = sigmoid(x), p_t = p or 1 - p depending on if the label is 1 or 0, respectively.
References:
https://arxiv.org/pdf/1708.02002.pdf
Usage:
model.compile(loss=[binary_focal_loss(alpha=.25, gamma=2)], metrics=["accuracy"], optimizer=adam)
"""
def binary_focal_loss_fixed(y_true, y_pred):
"""
:param y_true: A tensor of the same shape as `y_pred`
:param y_pred: A tensor resulting from a sigmoid
:return: Output tensor.
"""
pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
epsilon = K.epsilon()
# clip to prevent NaN's and Inf's
pt_1 = K.clip(pt_1, epsilon, 1. - epsilon)
pt_0 = K.clip(pt_0, epsilon, 1. - epsilon)
return -K.sum(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) \
-K.sum((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0))
return binary_focal_loss_fixed
def categorical_focal_loss(gamma=2., alpha=.25):
"""
Softmax version of focal loss.
m
FL = ∑ -alpha * (1 - p_o,c)^gamma * y_o,c * log(p_o,c)
c=1
where m = number of classes, c = class and o = observation
Parameters:
alpha -- the same as weighing factor in balanced cross entropy
gamma -- focusing parameter for modulating factor (1-p)
Default value:
gamma -- 2.0 as mentioned in the paper
alpha -- 0.25 as mentioned in the paper
References:
Official paper: https://arxiv.org/pdf/1708.02002.pdf
https://www.tensorflow.org/api_docs/python/tf/keras/backend/categorical_crossentropy
Usage:
model.compile(loss=[categorical_focal_loss(alpha=.25, gamma=2)], metrics=["accuracy"], optimizer=adam)
"""
def categorical_focal_loss_fixed(y_true, y_pred):
"""
:param y_true: A tensor of the same shape as `y_pred`
:param y_pred: A tensor resulting from a softmax
:return: Output tensor.
"""
# Scale predictions so that the class probas of each sample sum to 1
y_pred /= K.sum(y_pred, axis=-1, keepdims=True)
# Clip the prediction value to prevent NaN's and Inf's
epsilon = K.epsilon()
y_pred = K.clip(y_pred, epsilon, 1. - epsilon)
# Calculate Cross Entropy
cross_entropy = -y_true * K.log(y_pred)
# Calculate Focal Loss
loss = alpha * K.pow(1 - y_pred, gamma) * cross_entropy
# Sum the losses in mini_batch
return K.sum(loss, axis=1)
return categorical_focal_loss_fixed
#if __name__ == '__main__':
# Test serialization of nested functions
#bin_inner = dill.loads(dill.dumps(binary_focal_loss(gamma=2., alpha=.25)))
#print(bin_inner)
#cat_inner = dill.loads(dill.dumps(categorical_focal_loss(gamma=2., alpha=.25)))
#print(cat_inner)