forked from grussorusso/faas-offloading-sim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_plot_stats.py
executable file
·685 lines (566 loc) · 30.1 KB
/
my_plot_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import sys
import json
import matplotlib.pyplot as plt
import numpy as np
NODE_TYPE = 'heterogeneous'
UPDATE_INTERVAL = 3600
policy_colors = {"random-lb":"green", "round-robin-lb":"blue", "mama-lb":"orange", "const-hash-lb":"purple", "wrr-speedup-lb":"lawngreen", "wrr-memory-lb":"dodgerblue", "wrr-cost-lb":"fuchsia"}
cloud_nodes_colors = {"cloud1":"blue", "cloud2":"orange", "cloud3":"green", "cloud4":"red", "cloud5":"yellow", "cloud6":"pink", "cloud7":"purple", "cloud8":"lawngreen"}
policy2node2zero = {
"random-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"round-robin-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"mama-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"const-hash-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-speedup-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-memory-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-cost-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0}
}
def _plot_mean_cum_reward(time_frames, rewards):
cum_rewards = []
cum_reward = 0
n = 0
for i in range(0, len(time_frames)):
cum_reward += rewards[i]
n = i+1
cum_rewards.append(cum_reward / n)
plt.plot(time_frames, cum_rewards, color="red", label="mean reward")
def plot_rewards(time_frames, rewards, policies, title):
# Estrai politiche uniche e corrispondenti colori
unique_policies = list(set(policies))
"""
if max(rewards) >= 0.0:
plt.ylim(min(rewards) + min(rewards)*10/100, max(rewards) + 10/100)
else:
plt.ylim(min(rewards) + min(rewards)*10/100, max(rewards) - max(rewards)*10/100)
"""
#plt.ylim(-0.8, 0.2)
# Creazione del grafico
for _, policy in enumerate(unique_policies):
policy_indices = [j for j, p in enumerate(policies) if p == policy]
policy_time_frames = [time_frames[j] for j in policy_indices]
policy_rewards = [rewards[j] for j in policy_indices]
plt.scatter(policy_time_frames, policy_rewards, color=policy_colors[policy], label=policy)
# Grafico media mobile del reward
_plot_mean_cum_reward(time_frames, rewards)
plt.axvline(x=UPDATE_INTERVAL, color='black', linestyle='--', label='weights updated')
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Reward')
plt.title(f'Rewards with {title} nodes')
plt.legend() # Aggiunge la legenda con le etichette delle politiche
# Mostra il grafico
plt.tight_layout()
plt.grid(axis="y")
#plt.show()
return plt
def plot_time_rewards(time_frames, rewards, policies, title):
# Estrai politiche uniche e corrispondenti colori
unique_policies = list(set(policies))
#policy_colors = plt.cm.tab10.colors[:len(unique_policies)] # Scegliamo i primi colori dalla tabella colori "tab10"
# plt.figure(figsize=(5, 8))
# Collega i punti dello scatter plot con una linea
#plt.plot(time_frames, rewards, linestyle='-', color='darkgray')
plt.ylim(min(rewards) + min(rewards)*10/100, max(rewards) - max(rewards)*10/100)
# Creazione del grafico
for i, policy in enumerate(unique_policies):
policy_indices = [j for j, p in enumerate(policies) if p == policy]
policy_time_frames = [time_frames[j] for j in policy_indices]
policy_rewards = [rewards[j] for j in policy_indices]
plt.scatter(policy_time_frames, policy_rewards, color=policy_colors[policy], label=policy)
# Grafico media mobile del reward
_plot_mean_cum_reward(time_frames, rewards)
# plt.axhline(y=1.0, color='r', linestyle='--')
# Aggiunta delle etichette degli assi x con entrambi i tempi e le politiche
#combined_labels = [f'{time_frame} ({policy})' for time_frame, policy in zip(time_frames, policies)]
#plt.xticks(time_frames, combined_labels, rotation=45, ha='right')
#plt.xticks(time_frames, rotation=60)
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Reward')
plt.title(f'Rewards: response time ({title} nodes)')
plt.legend() # Aggiunge la legenda con le etichette delle politiche
# Mostra il grafico
plt.tight_layout()
plt.grid(axis="y")
plt.show()
def plot_load_imbalance_rewards(time_frames, rewards, policies, title):
# Estrai politiche uniche e corrispondenti colori
unique_policies = list(set(policies))
#policy_colors = plt.cm.tab10.colors[:len(unique_policies)] # Scegliamo i primi colori dalla tabella colori "tab10"
#plt.plot(time_frames, rewards, color="darkgray")
# Creazione del grafico
for _, policy in enumerate(unique_policies):
policy_indices = [j for j, p in enumerate(policies) if p == policy]
policy_time_frames = [time_frames[j] for j in policy_indices]
policy_rewards = [rewards[j] for j in policy_indices]
plt.scatter(policy_time_frames, policy_rewards, color=policy_colors[policy], label=policy)
_plot_mean_cum_reward(time_frames, rewards)
#plt.axhline(y=1.0, color='r', linestyle='--')
# Aggiunta delle etichette degli assi x con entrambi i tempi e le politiche
#combined_labels = [f'{time_frame} ({policy})' for time_frame, policy in zip(time_frames, policies)]
#plt.xticks(time_frames, combined_labels, rotation=45, ha='right')
#plt.xticks(time_frames, rotation=60)
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Reward')
plt.title(f'Rewards: load imbalance ({title} nodes)')
plt.legend() # Aggiunge la legenda con le etichette delle politiche
# Mostra il grafico
plt.tight_layout()
plt.grid(axis="y")
plt.show()
def plot_dropped_percentage_rewards(time_frames, rewards, policies, title):
# Estrai politiche uniche e corrispondenti colori
unique_policies = list(set(policies))
# Creazione del grafico
for _, policy in enumerate(unique_policies):
policy_indices = [j for j, p in enumerate(policies) if p == policy]
policy_time_frames = [time_frames[j] for j in policy_indices]
policy_rewards = [rewards[j] for j in policy_indices]
plt.scatter(policy_time_frames, policy_rewards, color=policy_colors[policy], label=policy)
_plot_mean_cum_reward(time_frames, rewards)
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Reward')
plt.title(f'Rewards: dropped percentage ({title} nodes)')
plt.legend() # Aggiunge la legenda con le etichette delle politiche
# Mostra il grafico
plt.tight_layout()
plt.grid(axis="y")
plt.show()
def plot_server_loads(time_frames, server_1_reqs, server_2_reqs, server_3_reqs, server_4_reqs, server_5_reqs, server_6_reqs, server_7_reqs, server_8_reqs, title):
plt.plot(time_frames, server_1_reqs, label='cloud1', color=cloud_nodes_colors["cloud1"])
plt.plot(time_frames, server_2_reqs, label='cloud2', color=cloud_nodes_colors["cloud2"])
plt.plot(time_frames, server_3_reqs, label='cloud3', color=cloud_nodes_colors["cloud3"])
plt.plot(time_frames, server_4_reqs, label='cloud4', color=cloud_nodes_colors["cloud4"])
plt.plot(time_frames, server_5_reqs, label='cloud5', color=cloud_nodes_colors["cloud5"])
plt.plot(time_frames, server_6_reqs, label='cloud6', color=cloud_nodes_colors["cloud6"])
plt.plot(time_frames, server_7_reqs, label='cloud7', color=cloud_nodes_colors["cloud7"])
plt.plot(time_frames, server_8_reqs, label='cloud8', color=cloud_nodes_colors["cloud8"])
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Number of requests')
plt.title(f'Load evolution ({title} nodes)')
# Aggiunge la legenda
plt.legend()
# Mostra il grafico
#plt.grid(True) # Opzionale: aggiunge la griglia al grafico
#plt.tight_layout() # Opzionale: migliora la disposizione degli elementi del grafico
plt.show()
def plot_server_loads_cum(time_frames, server_1_reqs_cum, server_2_reqs_cum, server_3_reqs_cum, policies):
plt.plot(time_frames, server_1_reqs_cum, label='cloud1')
plt.plot(time_frames, server_2_reqs_cum, label='cloud2')
plt.plot(time_frames, server_3_reqs_cum, label='cloud3')
# Aggiunta delle etichette degli assi x con entrambi i tempi e le politiche
combined_labels = [f'{time_frame} ({policy})' for time_frame, policy in zip(time_frames, policies)]
plt.xticks(time_frames, combined_labels, rotation=45, ha='right')
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('N° of requests')
plt.title('Load evolution')
# Aggiunge la legenda
plt.legend()
# Mostra il grafico
#plt.grid(True) # Opzionale: aggiunge la griglia al grafico
plt.tight_layout() # Opzionale: migliora la disposizione degli elementi del grafico
plt.show()
def plot_completion_percentage_reward(time_frames, rewards, policies):
pass
def plot_number_selected(data: dict, title):
categories = data.keys()
heights = data.values()
# Grafico dell'istogramma
plt.bar(categories, heights)
# Impostazione del valore minimo e massimo dell'asse y
#plt.ylim(0, 100)
# Aggiunta di etichette e titolo
plt.xlabel('Load Balancing Policies')
plt.ylabel('Policy Usage Count')
plt.title(f'Policy Invocation Frequency ({title} nodes)')
return plt
# Mostra il grafico
#plt.show()
def plot_dropped_reqs(time_frames, server_1_dropped_reqs, server_2_dropped_reqs, server_3_dropped_reqs, server_4_dropped_reqs, server_5_dropped_reqs, server_6_dropped_reqs, title):
plt.plot(time_frames, server_1_dropped_reqs, label='cloud1', color=cloud_nodes_colors["cloud1"])
plt.plot(time_frames, server_2_dropped_reqs, label='cloud2', color=cloud_nodes_colors["cloud2"])
plt.plot(time_frames, server_3_dropped_reqs, label='cloud3', color=cloud_nodes_colors["cloud3"])
plt.plot(time_frames, server_4_dropped_reqs, label='cloud4', color=cloud_nodes_colors["cloud4"])
plt.plot(time_frames, server_5_dropped_reqs, label='cloud5', color=cloud_nodes_colors["cloud5"])
plt.plot(time_frames, server_6_dropped_reqs, label='cloud6', color=cloud_nodes_colors["cloud6"])
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Number of requests')
plt.title(f'Dropped requests ({title} nodes)')
# Aggiunge la legenda
plt.legend()
# Mostra il grafico
#plt.grid(True) # Opzionale: aggiunge la griglia al grafico
plt.tight_layout() # Opzionale: migliora la disposizione degli elementi del grafico
plt.show()
def plot_drop_reqs_bar(data: dict, title):
# set width of bar
barWidth = 0.1
# set height of bar
cloud1 = [data[policy]["cloud1"] for policy in data]
cloud2 = [data[policy]["cloud2"] for policy in data]
cloud3 = [data[policy]["cloud3"] for policy in data]
cloud4 = [data[policy]["cloud4"] for policy in data]
cloud5 = [data[policy]["cloud5"] for policy in data]
cloud6 = [data[policy]["cloud6"] for policy in data]
cloud7 = [data[policy]["cloud7"] for policy in data]
cloud8 = [data[policy]["cloud8"] for policy in data]
# Set position of bar on X axis
br1 = np.arange(len(cloud1))
br2 = [x + barWidth for x in br1]
br3 = [x + barWidth for x in br2]
br4 = [x + barWidth for x in br3]
br5 = [x + barWidth for x in br4]
br6 = [x + barWidth for x in br5]
br7 = [x + barWidth for x in br6]
br8 = [x + barWidth for x in br7]
# Make the plot
plt.bar(br1, cloud1, color = cloud_nodes_colors["cloud1"], width = barWidth, label ='cloud1')
plt.bar(br2, cloud2, color = cloud_nodes_colors["cloud2"], width = barWidth, label ='cloud2')
plt.bar(br3, cloud3, color = cloud_nodes_colors["cloud3"], width = barWidth, label ='cloud3')
plt.bar(br4, cloud4, color = cloud_nodes_colors["cloud4"], width = barWidth, label ='cloud4')
plt.bar(br5, cloud5, color = cloud_nodes_colors["cloud5"], width = barWidth, label ='cloud5')
plt.bar(br6, cloud6, color = cloud_nodes_colors["cloud6"], width = barWidth, label ='cloud6')
plt.bar(br7, cloud7, color = cloud_nodes_colors["cloud7"], width = barWidth, label ='cloud7')
plt.bar(br8, cloud8, color = cloud_nodes_colors["cloud8"], width = barWidth, label ='cloud8')
# Adding plot info
plt.title(f'Number of requests dropped by cloud nodes ({title})')
plt.xlabel('Load balancing policies')
plt.ylabel('Number of dropped requests')
plt.xticks([r + barWidth + 0.15 for r in range(len(cloud1))], ['random-lb', 'round-robin-lb', 'mama-lb', 'const-hash-lb', 'wrr-speedup-lb', 'wrr-memory-lb', 'wrr-cost-lb'])
plt.legend()
plt.show()
def plot_drop_reqs_bar_percentage(data: dict, title):
categories = data.keys()
heights = data.values()
# Creazione delle etichette personalizzate
custom_labels = [f'{policy} ({percentage:.2f}%)' for policy, percentage in zip(categories, heights)]
# Creazione dell'istogramma
fig, ax = plt.subplots()
ax.bar(categories, heights)
# Aggiunta dei nomi personalizzati per i tick dell'asse x
ax.set_xticks(range(len(categories))) # Imposta la posizione dei tick
ax.set_xticklabels(custom_labels, rotation=30, ha="center") # Imposta le etichette personalizzate
# Aggiunta di etichette e titolo
ax.set_xlabel('Load Balancing Policies')
ax.set_ylabel('Percentage of dropped requests (%)')
ax.set_title('Percentage of dropped requests per policy')
# Mostra il grafico
plt.tight_layout() # Per evitare che le etichette si sovrappongano
plt.show()
def plot_resp_times(time_frames, resp_times, title):
cum_resp_times = []
cum_resp_time = 0
n = 0
for i in range(0, len(resp_times)):
cum_resp_time += resp_times[i]
n = i+1
cum_resp_times.append(cum_resp_time / n)
plt.plot(time_frames, cum_resp_times, color="blue", label="mean response time")
plt.plot(time_frames, resp_times, color="green", label="response time")
plt.xlim(right=28800)
plt.axvline(x=UPDATE_INTERVAL, color='black', linestyle='--', label='weights updated')
plt.ylim(0.05, 0.4)
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Response Time')
plt.title(f'Response Time with {title} nodes')
plt.legend()
# Mostra il grafico
plt.tight_layout()
plt.show()
def plot_cost(time_frames, costs, title):
cum_costs = []
cum_cost = 0
n = 0
for i in range(0, len(costs)):
cum_cost += costs[i]
n = i+1
cum_costs.append(cum_cost / n)
plt.plot(time_frames, cum_costs, color="red", label="mean cost")
plt.plot(time_frames, costs, color="green", label="cost")
plt.xlim(right=28800)
plt.axvline(x=UPDATE_INTERVAL, color='black', linestyle='--', label='weights updated')
plt.ylim(0.05, 0.4)
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Cost')
plt.title(f'Cost with {title} nodes')
plt.legend()
# Mostra il grafico
plt.tight_layout()
plt.show()
def plot_utility(time_frames, utilities, title):
cum_utilities = []
cum_utility = 0
n = 0
for i in range(0, len(utilities)):
cum_utility += utilities[i]
n = i+1
cum_utilities.append(cum_utility / n)
plt.plot(time_frames, cum_utilities, color="blue", label="mean utility")
plt.plot(time_frames, utilities, color="green", label="utility")
plt.axvline(x=UPDATE_INTERVAL, color='black', linestyle='--', label='weights updated')
plt.ylim(7000, 21000)
# Aggiunta di etichette agli assi e titolo
plt.xlabel('Time (s)')
plt.ylabel('Utility')
plt.title(f'Utility with {title} nodes')
plt.legend()
# Mostra il grafico
plt.tight_layout()
plt.show()
def plot_load_imbalance_rewards_ax(ax, time_frames, rewards, policies):
# Estrai politiche uniche e corrispondenti colori
unique_policies = list(set(policies))
#policy_colors = plt.cm.tab10.colors[:len(unique_policies)] # Scegliamo i primi colori dalla tabella colori "tab10"
#plt.plot(time_frames, rewards, color="darkgray")
# Creazione del grafico
for _, policy in enumerate(unique_policies):
policy_indices = [j for j, p in enumerate(policies) if p == policy]
policy_time_frames = [time_frames[j] for j in policy_indices]
policy_rewards = [rewards[j] for j in policy_indices]
ax.scatter(policy_time_frames, policy_rewards, color=policy_colors[policy], label=policy)
_plot_mean_cum_reward(ax, time_frames, rewards)
#plt.axhline(y=1.0, color='r', linestyle='--')
# Aggiunta delle etichette degli assi x con entrambi i tempi e le politiche
#combined_labels = [f'{time_frame} ({policy})' for time_frame, policy in zip(time_frames, policies)]
#plt.xticks(time_frames, combined_labels, rotation=45, ha='right')
#plt.xticks(time_frames, rotation=60)
# Aggiunta di etichette agli assi e titolo
ax.set_xlabel('Time (s)')
ax.set_ylabel('Reward')
ax.set_title('Rewards: load imbalance (homogeneous nodes)')
ax.legend() # Aggiunge la legenda con le etichette delle politiche
ax.grid(axis="y")
def plot_server_loads_ax(ax, time_frames, server_1_reqs, server_2_reqs, server_3_reqs, policies):
ax.plot(time_frames, server_1_reqs, label='cloud1')
ax.plot(time_frames, server_2_reqs, label='cloud2')
ax.plot(time_frames, server_3_reqs, label='cloud3')
# Aggiunta delle etichette degli assi x con entrambi i tempi e le politiche
combined_labels = [f'{time_frame} ({policy})' for time_frame, policy in zip(time_frames, policies)]
# plt.xticks(time_frames, combined_labels, rotation=45, ha='right')
# Aggiunta di etichette agli assi e titolo
ax.set_xlabel('Time (s)')
ax.set_ylabel('Number of requests')
ax.set_title('Load evolution (homogenous nodes)')
# Aggiunge la legenda
ax.legend()
def test_double_plot(time_frames, rewards, server_1_reqs, server_2_reqs, server_3_reqs, policies):
# Creazione di due assi (subplot) sulla stessa figura
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6)) # 2 righe, 1 colonna
# Grafico 1
plot_load_imbalance_rewards_ax(ax1, time_frames, rewards, policies)
# Grafico 2
plot_server_loads_ax(ax2, time_frames, server_1_reqs, server_2_reqs, server_3_reqs, policies)
# Ottimizza la disposizione dei subplot
plt.tight_layout()
# Mostra la figura con i due grafici
plt.show()
if __name__ == '__main__':
"""
if len(sys.argv) < 3:
print("Uso: nome_programma tipo_di_grafici[response-time, load-imbalance, dropped-percentage, all] tipo_di_nodi[homogeneous, heterogeneous]")
exit(1)
"""
with open('mab_stats.json', 'r') as f:
data = json.load(f)
time_frames = []
policies = []
policies_frequency = {"random-lb":0, "round-robin-lb":0, "mama-lb":0, "const-hash-lb":0, "wrr-speedup-lb":0, "wrr-memory-lb":0, "wrr-cost-lb":0}
pol_fr_prev = {"random-lb":0, "round-robin-lb":0, "mama-lb":0, "const-hash-lb":0, "wrr-speedup-lb":0, "wrr-memory-lb":0, "wrr-cost-lb":0}
pol_fr_post = {"random-lb":0, "round-robin-lb":0, "mama-lb":0, "const-hash-lb":0, "wrr-speedup-lb":0, "wrr-memory-lb":0, "wrr-cost-lb":0}
server_loads = []
server_loads_cum = []
dropped_reqs = []
rewards = []
cum_reward = 0
cum_rewards = []
resp_times = []
costs = []
utilities = []
total_cost = 0
total_utility = 0
for d in data:
time_frames.append(d['time'])
policies.append(d['policy'])
policies_frequency[d['policy']] += 1
if d['time'] < 9000:
pol_fr_prev[d['policy']] += 1
else:
pol_fr_post[d['policy']] += 1
server_loads.append(d['server_loads'])
server_loads_cum.append(d['server_loads_cum'])
dropped_reqs.append(d['dropped_reqs'])
rewards.append(d['reward'])
cum_reward += d['reward']
cum_rewards.append(cum_reward)
resp_times.append(d['avg_resp_time'])
costs.append(d['cost'])
utilities.append(d['utility'])
total_cost += d['cost']
total_utility += d['utility']
data_drops = {
"random-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"round-robin-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"mama-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"const-hash-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-speedup-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-memory-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-cost-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0}
}
for i in range(0, len(dropped_reqs)):
data_drops[policies[i]]["cloud1"] = data_drops.get(policies[i], 0)["cloud1"] + dropped_reqs[i][0]
data_drops[policies[i]]["cloud2"] = data_drops.get(policies[i], 0)["cloud2"] + dropped_reqs[i][1]
data_drops[policies[i]]["cloud3"] = data_drops.get(policies[i], 0)["cloud3"] + dropped_reqs[i][2]
data_drops[policies[i]]["cloud4"] = data_drops.get(policies[i], 0)["cloud4"] + dropped_reqs[i][3]
data_drops[policies[i]]["cloud5"] = data_drops.get(policies[i], 0)["cloud5"] + dropped_reqs[i][4]
data_drops[policies[i]]["cloud6"] = data_drops.get(policies[i], 0)["cloud6"] + dropped_reqs[i][5]
data_drops[policies[i]]["cloud7"] = data_drops.get(policies[i], 0)["cloud7"] + dropped_reqs[i][6]
data_drops[policies[i]]["cloud8"] = data_drops.get(policies[i], 0)["cloud8"] + dropped_reqs[i][7]
#print("drops: ", data_drops)
data_arrivals = {
"random-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"round-robin-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"mama-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"const-hash-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-speedup-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-memory-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0},
"wrr-cost-lb":{"cloud1":0, "cloud2":0, "cloud3":0, "cloud4":0, "cloud5":0, "cloud6":0, "cloud7":0, "cloud8":0}
}
for i in range(0, len(server_loads)):
data_arrivals[policies[i]]["cloud1"] = data_arrivals.get(policies[i], 0)["cloud1"] + server_loads[i][0]
data_arrivals[policies[i]]["cloud2"] = data_arrivals.get(policies[i], 0)["cloud2"] + server_loads[i][1]
data_arrivals[policies[i]]["cloud3"] = data_arrivals.get(policies[i], 0)["cloud3"] + server_loads[i][2]
data_arrivals[policies[i]]["cloud4"] = data_arrivals.get(policies[i], 0)["cloud4"] + server_loads[i][3]
data_arrivals[policies[i]]["cloud5"] = data_arrivals.get(policies[i], 0)["cloud5"] + server_loads[i][4]
data_arrivals[policies[i]]["cloud6"] = data_arrivals.get(policies[i], 0)["cloud6"] + server_loads[i][5]
data_arrivals[policies[i]]["cloud7"] = data_arrivals.get(policies[i], 0)["cloud7"] + server_loads[i][6]
data_arrivals[policies[i]]["cloud8"] = data_arrivals.get(policies[i], 0)["cloud8"] + server_loads[i][7]
#print("arrivals: ", data_arrivals)
"""
data_drops_percentage = policy2node2zero.copy()
for key, value in data_drops.items():
#print(key, value)
if data_arrivals.get(key, 0)["cloud1"] != 0:
data_drops_percentage[key]["cloud1"] = data_drops.get(key, 0)["cloud1"] / data_arrivals.get(key, 0)["cloud1"]
else:
data_drops_percentage[key]["cloud1"] = 0
if data_arrivals.get(key, 0)["cloud2"] != 0:
data_drops_percentage[key]["cloud2"] = data_drops.get(key, 0)["cloud2"] / data_arrivals.get(key, 0)["cloud2"]
else:
data_drops_percentage[key]["cloud2"] = 0
if data_arrivals.get(key, 0)["cloud3"] != 0:
data_drops_percentage[key]["cloud3"] = data_drops.get(key, 0)["cloud3"] / data_arrivals.get(key, 0)["cloud3"]
else:
data_drops_percentage[key]["cloud3"] = 0
if data_arrivals.get(key, 0)["cloud4"] != 0:
data_drops_percentage[key]["cloud4"] = data_drops.get(key, 0)["cloud4"] / data_arrivals.get(key, 0)["cloud4"]
else:
data_drops_percentage[key]["cloud4"] = 0
if data_arrivals.get(key, 0)["cloud5"] != 0:
data_drops_percentage[key]["cloud5"] = data_drops.get(key, 0)["cloud5"] / data_arrivals.get(key, 0)["cloud5"]
else:
data_drops_percentage[key]["cloud5"] = 0
if data_arrivals.get(key, 0)["cloud6"] != 0:
data_drops_percentage[key]["cloud6"] = data_drops.get(key, 0)["cloud6"] / data_arrivals.get(key, 0)["cloud6"]
else:
data_drops_percentage[key]["cloud6"] = 0
if data_arrivals.get(key, 0)["cloud7"] != 0:
data_drops_percentage[key]["cloud7"] = data_drops.get(key, 0)["cloud7"] / data_arrivals.get(key, 0)["cloud7"]
else:
data_drops_percentage[key]["cloud7"] = 0
if data_arrivals.get(key, 0)["cloud8"] != 0:
data_drops_percentage[key]["cloud8"] = data_drops.get(key, 0)["cloud8"] / data_arrivals.get(key, 0)["cloud8"]
else:
data_drops_percentage[key]["cloud8"] = 0
print(data_drops_percentage)
"""
policy2arrivals = {}
for policy, clouds in data_arrivals.items():
policy2arrivals[policy] = sum(clouds.values())
#print("pol2arvs: ", policy2arrivals)
policy2drops = {}
for policy, clouds in data_drops.items():
policy2drops[policy] = sum(clouds.values())
#print("pol2drops: ", policy2drops)
policy2drops_percentage = {}
# Calcolo della percentuale di drops sugli arrivi per ciascuna policy
for policy in policy2arrivals.keys():
if policy in policy2drops:
arrivals = policy2arrivals[policy]
drops = policy2drops[policy]
drop_percentage = (drops / arrivals) * 100 # Calcola la percentuale
policy2drops_percentage[policy] = drop_percentage
server_1_reqs = []
server_2_reqs = []
server_3_reqs = []
server_4_reqs = []
server_5_reqs = []
server_6_reqs = []
server_7_reqs = []
server_8_reqs = []
for loads in server_loads:
server_1_reqs.append(loads[0])
server_2_reqs.append(loads[1])
server_3_reqs.append(loads[2])
server_4_reqs.append(loads[3])
server_5_reqs.append(loads[4])
server_6_reqs.append(loads[5])
server_7_reqs.append(loads[6])
server_8_reqs.append(loads[7])
server_1_reqs_cum = []
server_2_reqs_cum = []
server_3_reqs_cum = []
for loads in server_loads_cum:
server_1_reqs_cum.append(loads[0])
server_2_reqs_cum.append(loads[1])
server_3_reqs_cum.append(loads[2])
server_1_dropped_reqs = []
server_2_dropped_reqs = []
server_3_dropped_reqs = []
server_4_dropped_reqs = []
server_5_dropped_reqs = []
server_6_dropped_reqs = []
server_7_dropped_reqs = []
server_8_dropped_reqs = []
for dropped in dropped_reqs:
server_1_dropped_reqs.append(dropped[0])
server_2_dropped_reqs.append(dropped[1])
server_3_dropped_reqs.append(dropped[2])
server_4_dropped_reqs.append(dropped[3])
server_5_dropped_reqs.append(dropped[4])
server_6_dropped_reqs.append(dropped[5])
server_7_dropped_reqs.append(dropped[6])
server_8_dropped_reqs.append(dropped[7])
total_drops = 0
for dropped in dropped_reqs:
total_drops += sum(dropped)
print("total drops: ", total_drops)
print("total cost: ", total_cost)
print("total utility: ", total_utility)
"""
if (sys.argv[1] == "response-time"):
plot_time_rewards(time_frames, rewards, policies, title=sys.argv[2])
elif (sys.argv[1] == "load-imbalance"):
plot_load_imbalance_rewards(time_frames, rewards, policies, title=sys.argv[2])
elif (sys.argv[1] == "dropped-percentage"):
plot_dropped_percentage_rewards(time_frames, rewards, policies, title=sys.argv[2])
else:
RuntimeError(f"Unknown {sys.argv[1]}")
"""
# plot_time_rewards(time_frames, rewards, policies, title=sys.argv[2])
# plot_rewards(time_frames, rewards, policies, title=NODE_TYPE)
# plot_server_loads(time_frames, server_1_reqs, server_2_reqs, server_3_reqs, server_4_reqs, server_5_reqs, server_6_reqs, server_7_reqs, server_8_reqs, title=NODE_TYPE)
# plot_number_selected(policies_frequency, title=NODE_TYPE)
plot_number_selected(pol_fr_prev, title=NODE_TYPE)
plot_number_selected(pol_fr_post, title=NODE_TYPE)
# plot_drop_reqs_bar(data_drops, title=NODE_TYPE)
# plot_drop_reqs_bar_percentage(policy2drops_percentage, title=NODE_TYPE)
plot_resp_times(time_frames, resp_times, title=NODE_TYPE)
plot_cost(time_frames, costs, title=NODE_TYPE)
# plot_utility(time_frames, utilities, title=NODE_TYPE)