diff --git a/src/pymatgen/transformations/standard_transformations.py b/src/pymatgen/transformations/standard_transformations.py index 8d8e231b8ca..ea5cd933fc8 100644 --- a/src/pymatgen/transformations/standard_transformations.py +++ b/src/pymatgen/transformations/standard_transformations.py @@ -23,6 +23,7 @@ from pymatgen.transformations.transformation_abc import AbstractTransformation if TYPE_CHECKING: + from numpy.random import Generator from typing_extensions import Self from pymatgen.core.sites import PeriodicSite @@ -451,6 +452,7 @@ class OrderDisorderedStructureTransformation(AbstractTransformation): ALGO_FAST = 0 ALGO_COMPLETE = 1 ALGO_BEST_FIRST = 2 + ALGO_RANDOM = -1 def __init__(self, algo=ALGO_FAST, symmetrized_structures=False, no_oxi_states=False): """ @@ -467,7 +469,9 @@ def __init__(self, algo=ALGO_FAST, symmetrized_structures=False, no_oxi_states=F self.no_oxi_states = no_oxi_states self.symmetrized_structures = symmetrized_structures - def apply_transformation(self, structure: Structure, return_ranked_list: bool | int = False) -> Structure: + def apply_transformation( + self, structure: Structure, return_ranked_list: bool | int = False, occ_tol=0.25 + ) -> Structure: """For this transformation, the apply_transformation method will return only the ordered structure with the lowest Ewald energy, to be consistent with the method signature of the other transformations. @@ -478,6 +482,9 @@ def apply_transformation(self, structure: Structure, return_ranked_list: bool | structure: Oxidation state decorated disordered structure to order return_ranked_list (bool | int, optional): If return_ranked_list is int, that number of structures is returned. If False, only the single lowest energy structure is returned. Defaults to False. + occ_tol (float): Occupancy tolerance. If the total occupancy of a group is within this value + of an integer, it will be rounded to that integer otherwise raise a ValueError. + Defaults to 0.25. Returns: Depending on returned_ranked list, either a transformed structure @@ -529,6 +536,17 @@ def apply_transformation(self, structure: Structure, return_ranked_list: bool | # generate the list of manipulations and input structure struct = Structure.from_sites(structure) + # We will first create an initial ordered structure by filling all sites + # with the species that has the highest oxidation state (initial_sp) + # replacing all other species on a given site. + # then, we process a list of manipulations to get the final structure. + # The manipulations are of the format: + # [oxi_ratio, 1, [0,1,2,3], Li+] + # which means -- Place 1 Li+ in any of these 4 sites + # the oxi_ratio is the ratio of the oxidation state of the species to + # the initial species. This is used to determine the energy of the + # manipulation in the EwaldMinimizer, but is not used in the purely random + # algorithm. manipulations = [] for group in equivalent_sites: total_occupancy = dict( @@ -536,7 +554,7 @@ def apply_transformation(self, structure: Structure, return_ranked_list: bool | ) # round total occupancy to possible values for key, val in total_occupancy.items(): - if abs(val - round(val)) > 0.25: + if abs(val - round(val)) > occ_tol: raise ValueError("Occupancy fractions not consistent with size of unit cell") total_occupancy[key] = round(val) # start with an ordered structure @@ -555,6 +573,16 @@ def apply_transformation(self, structure: Structure, return_ranked_list: bool | if empty > 0.5: manipulations.append([0, empty, list(group), None]) + if self.algo == self.ALGO_RANDOM: + rand_structures = get_randomly_manipulated_structures( + struct=struct, manipulations=manipulations, n_return=n_to_return + ) + if return_ranked_list: + return [ + {"energy": 0.0, "energy_above_minimum": 0.0, "structure": s} for s in rand_structures[:n_to_return] + ] + return rand_structures[0] + matrix = EwaldSummation(struct).total_energy_matrix ewald_m = EwaldMinimizer(matrix, manipulations, n_to_return, self.algo) @@ -891,3 +919,82 @@ def apply_transformation(self, structure): def __repr__(self): return "ScaleToRelaxedTransformation" + + +def _sample_random_manipulation(manipulation, rng, manipulated) -> list[tuple[int, SpeciesLike]]: + """Sample a single random manipulation. + + Each manipulation is given in the form of a tuple + `(oxi_ratio, nsites, indices, sp)` where: + Which means choose nsites from the list of indices and replace them + With the species `sp`. + """ + _, nsites, indices, sp = manipulation + maniped_indices = [i for i, _ in manipulated] + allowed_sites = [i for i in indices if i not in maniped_indices] + if len(allowed_sites) < nsites: + raise RuntimeError( + "No valid manipulations possible. " + f" You have already applied a manipulation to each site in this group {indices}" + ) + sampled_sites = rng.choice(allowed_sites, nsites, replace=False).tolist() + sampled_sites.sort() + return [(i, sp) for i in sampled_sites] + + +def _get_manipulation(manipulations: list, rng: Generator, max_attempts, seen: set[tuple]) -> tuple: + """Apply each manipulation.""" + for _ in range(max_attempts): + manipulated: list[tuple] = [] + for manip_ in manipulations: + new_manips = _sample_random_manipulation(manip_, rng, manipulated) + manipulated += new_manips + tm_ = tuple(manipulated) + if tm_ not in seen: + return tm_ + raise RuntimeError( + "Could not apply manipulations to structure" + "this is likely because you have already applied all the possible manipulations" + ) + + +def _apply_manip(struct, manipulations) -> Structure: + """Apply manipulations to a structure.""" + struct_copy = struct.copy() + rm_indices = [] + for manip in manipulations: + idx, sp = manip + if sp is None: + rm_indices.append(idx) + else: + struct_copy.replace(idx, sp) + struct_copy.remove_sites(rm_indices) + return struct_copy + + +def get_randomly_manipulated_structures( + struct: Structure, manipulations: list, seed=None, n_return: int = 1 +) -> list[Structure]: + """Get a structure with random manipulations applied. + + Args: + struct: Input structure + manipulations: List of manipulations to apply + seed: Seed for random number generator + n_return: Number of structures to return + + Returns: + List of structures with manipulations applied. + """ + rng = np.random.default_rng(seed) + seen: set[tuple] = set() + sampled_manips = [] + + for _ in range(n_return): + manip_ = _get_manipulation(manipulations, rng, 1000, seen) + seen.add(manip_) + sampled_manips.append(manip_) + output_structs = [] + for manip_ in sampled_manips: + output_structs.append(_apply_manip(struct, manip_)) + return output_structs diff --git a/tests/transformations/test_standard_transformations.py b/tests/transformations/test_standard_transformations.py index 0074eece962..d9ce0da09d8 100644 --- a/tests/transformations/test_standard_transformations.py +++ b/tests/transformations/test_standard_transformations.py @@ -401,6 +401,32 @@ def test_best_first(self): output = trafo.apply_transformation(struct, return_ranked_list=3) assert output[0]["energy"] == approx(-234.57813667648315, abs=1e-4) + def test_random_sample(self): + struc_str = ( + "3.333573 0.000000 1.924639\n" + "1.111191 3.142924 1.924639\n" + "0.000000 0.000000 3.849278\n" + "1.0 0.0 0.0\n" + "0.0 1.0 0.0\n" + "0.0 0.0 1.0\n" + "0.875000 0.875000 0.875000 Si=1\n" + "0.125000 0.125000 0.125000 Si=1" + ) + si = Structure.from_str(struc_str, fmt="mcsqs") + struct = si * [3, 2, 1] + struct.replace(0, {"Fe": 0.5, "Ni": 0.5}) + struct.replace(1, {"Fe": 0.5, "Ni": 0.5}) + trafo = OrderDisorderedStructureTransformation( + algo=OrderDisorderedStructureTransformation.ALGO_RANDOM, no_oxi_states=True + ) + output = trafo.apply_transformation(struct * [2, 2, 2], return_ranked_list=3) + assert len(output) == 3 + for entry in output: + assert set(entry.keys()) == {"structure", "energy", "energy_above_minimum"} + + output = trafo.apply_transformation(struct * [2, 2, 2], return_ranked_list=False) + assert output.composition.reduced_formula == struct.composition.reduced_formula + class TestPrimitiveCellTransformation: def test_apply_transformation(self):