-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
91 lines (68 loc) · 2.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
from torch import nn
import torchvision.transforms.functional as tf
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels), # It is not in original paper
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels), # It is not in original paper
nn.ReLU(inplace=True),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.conv(x)
class UNet(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=1, # In the original paper they use 2. But we use 1 for binary image segmentation
features=[64, 128, 256, 512]
):
super().__init__()
self.downs = nn.ModuleList()
self.ups = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Down part of UNet
for feature in features:
self.downs.append(DoubleConv(in_channels=in_channels, out_channels=feature))
in_channels = feature
# Up part of UNet
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(
in_channels=feature * 2, out_channels=feature, kernel_size=2, stride=2
))
self.ups.append(DoubleConv(
feature * 2, feature
))
self.bottleneck = DoubleConv(features[-1], features[-1] * 2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
skip_connections = []
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1] # Reverse the skip_connections list
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx // 2]
if x.shape != skip_connection.shape:
# In original paper they do croping
# (N, num_channels, H, W)
x = tf.resize(x, size=skip_connection.shape[2:])
skip_concat = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx + 1](skip_concat)
return self.final_conv(x)
def main() -> None:
x = torch.randn((3, 1, 161, 161))
model = UNet(in_channels=1, out_channels=1)
preds = model(x)
print(f'{x.shape = }')
print(f'{preds.shape = }')
assert preds.shape == x.shape
if __name__ == "__main__":
main()