-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlogVariants.py
146 lines (111 loc) · 3.5 KB
/
BlogVariants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
"""
Blog work on variants.
Created on Mon Feb 15 10:19:50 2021
@author: 212367548
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import covid
import urllib
from scipy import signal
import datetime
import os
#%% Get the data
# covid data
widata = covid.read_covid_data_wi('state')
plotdata = pd.DataFrame(index=pd.date_range(start='2021-01-10', end='2021-05-30'))
plotdata['Cases'] = widata.set_index('Date')['POS_NEW']
plotdata['Cases 7-day'] = widata.set_index('Date')['POS_NEW'].rolling(7).mean()
#%% Estimates
N = len(plotdata)
R1 = 0.81
R2 = R1*1.4
s = 5
d = np.arange(0,N)
start = 2900
frac2 = 0.02 / 4 # 2% at Jan 31; start at Jan 10 is two fraction doubling times
# frac2 = 0.001 / 4 # 0.1% at Jan 31; based on 5 positives / ~5000 sequenced
v1 = start * np.exp((R1-1)*d/s)
v2 = frac2 * start * np.exp((R2-1)*d/s)
# plt.figure()
# plt.plot(v1+v2)
# plt.plot(v2)
# plt.figure()
# plt.plot(v2/(v1+v2))
plotdata['Classic trend'] = v1
plotdata['B.1.1.7 trend'] = v2
plotdata['Model total'] = v1 + v2
plotdata.index.name = 'Date'
#%% Load gisaid estimates
gisaid_all = pd.read_csv('data\\sequences\\gisaid-all-WI.csv')
gisaid_b117 = pd.read_csv('data\\sequences\\gisaid-b117-WI.csv')
variants = gisaid_all.groupby('Collection date').count()
variants['All'] = variants['Accession ID']
variants = variants.drop(['Virus name', 'Accession ID'], axis=1)
variants['B117'] = gisaid_b117.groupby('Collection date').count()['Accession ID']
variants = variants.fillna(0)
var_smooth = variants.rolling(7).sum()
variants['B117 fraction'] = var_smooth['B117'] / var_smooth['All']
variants.index.name = 'Date'
variants.index = pd.to_datetime(variants.index)
variants = variants.loc[datetime.datetime(2021,1,1):datetime.datetime(2021,3,27)]
plotdata['B117 estimate'] = plotdata['Cases 7-day'] * variants['B117 fraction']
#%% Plot
# fig = px.line(plotdata, y=['Cases 7-day', 'Classic', 'B.1.1.7', 'Model total'])
fig = px.area(
plotdata,
y=['B.1.1.7 trend', 'Classic trend'],
color_discrete_sequence=['orange', 'lightsteelblue'],
title='<i><b>Possible</i></b> B.1.1.7 variant trend in WI',
labels={'index':'Date', 'value': 'Cases / day'}
)
fig.add_trace(
go.Scatter(
x=plotdata.index,
y=plotdata['Cases 7-day'],
name='Cases (7-day avg)',
marker_color='steelblue',
)
)
fig.add_trace(
go.Scatter(
x=plotdata.index,
y=plotdata['B117 estimate'],
name='B117 estimate',
marker_color='saddlebrown',
line_dash='dot'
)
)
fig.update_layout(legend_traceorder='reversed', legend_title='')
# fig.add_trace(
# go.Bar(
# x=data1.index,
# y=data1.iloc[:,gg],
# name=data1_label,
# marker_color=plotcolors[2],
# hovertemplate='%{y:.0f}',
# showlegend=showlegend,
# ),
# row=sub_row[gg],
# col=sub_col[gg],
# )
# save as html, with plotly JS library loaded from CDN
htmlfile='docs\\assets\\plotly\\Variant-Estimate.html'
fig.write_html(
file=htmlfile,
default_height=500,
include_plotlyjs='cdn',
)
pngfile = 'docs\\assets\\Variant-Estimate.png'
fig.write_image(
pngfile,
width=700,
height=500,
engine='kaleido',
)
os.startfile(htmlfile)
os.startfile(pngfile)