-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUpdateRegionalPositivity.py
186 lines (144 loc) · 5.4 KB
/
UpdateRegionalPositivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- coding: utf-8 -*-
"""
Update plots for regional cases/tests and deaths/hospitalizations.
"""
import pandas as pd
import datetime
import os
import covid
#%% Cases per 100K max for y-axes
per100k = 250
date_start = datetime.datetime(2021,6,15)
#%% Get the data
# population data
csv_file_pop = '.\\data\\Population-Data-WI.csv'
popdata = covid.read_pop_data_wi(csv_file_pop)
# covid data
widata = covid.download_covid_data_wi('county2')
# widata = covid.read_covid_data_wi('county')
#%% Sum up population by region
# get mapping between county and region
region_file = 'data\\Regions-WI.csv'
region_map = pd.read_csv(region_file)
region_map = region_map[['County', 'Modified HERC Short']]
region_map = region_map.set_index('County')
region_map = region_map.squeeze()
# get a list of region names
region_list = region_map.unique()
# add WI overall to the map
region_map['WI'] = 'WI'
# apply this map to the county name column to create a new Region column
widata['Region'] = widata.GEOName.apply(lambda n: region_map[n])
# group data by regions
regiondata = widata.groupby(['Date', 'Region']).sum()
regiondata = regiondata.reset_index()
# find population of these regions
popdata_region = popdata.to_frame(name='Population')
popdata_region['Region'] = region_map
pop_region = popdata_region.groupby('Region').sum().squeeze()
#%% Trim data
col_rename = {'Date': 'Date',
'Region': 'Region',
'POS_NEW_CONF': 'Cases', # confirmed cases
'TESTS_NEW': 'Tests', # total tests
'DTH_CONF_Daily': 'Deaths', # by date of death
}
regiondata = regiondata[col_rename.keys()]
regiondata = regiondata.rename(columns=col_rename)
# convert to date and discard the time portion
regiondata.Date = pd.to_datetime(regiondata.Date).apply(lambda d: d.date())
regiondata = regiondata.sort_values('Date')
#%% compute percent positive - NEED TO GROUP BY REGION
regiondata['Percent positive'] = regiondata['Cases'] / regiondata['Tests']
# compute 7-day averages inside region groups
regiondata['Cases (7-day)'] = regiondata.groupby('Region').Cases.rolling(7).mean().reset_index(level=0, drop=True)
regiondata['Tests (7-day)'] = regiondata.groupby('Region').Tests.rolling(7).mean().reset_index(level=0, drop=True)
regiondata['Percent positive (7-day avg)'] = regiondata['Cases (7-day)'] / regiondata['Tests (7-day)']
#%% convert per-capita (per 100K)
regiondata['RegionPop'] = regiondata.Region.apply(lambda n: pop_region[n])
capita = regiondata.copy()
datacols = ['Cases', 'Tests', 'Deaths', 'Cases (7-day)', 'Tests (7-day)']
capita[datacols] = regiondata[datacols].div(regiondata['RegionPop'], axis=0) * 100000
#%% Region names and colors
plotpath = '.\\docs\\_includes\\plotly'
regiondata['NAME'] = regiondata['Region']
region_ordered = ['Northwest', 'North Central', 'Northeast',
'Western', 'Fox Valley', 'Southeast',
'South Central', 'Madison', 'Milwaukee']
color_dict = {'Northwest': 'thistle',
'North Central': 'khaki',
'Northeast': 'green',
'Western': 'sandybrown',
'Fox Valley': 'yellowgreen',
'Southeast': 'lightsteelblue',
'South Central': 'pink',
'Madison': 'red',
'Milwaukee': 'navy',
'': 'black'}
colors = [color_dict[r] for r in region_ordered]
#%% Grid plot - Cases / % Positive
plotpath = '.\\docs\\_includes\\plotly'
savefile = plotpath+'\\Cases-Positivity-Region.html'
region_ordered2 = ['Northwest', '',
'North Central', 'Northeast',
'Western', 'Fox Valley',
'South Central', 'Southeast',
'Madison', 'Milwaukee']
colors2 = [color_dict[r] for r in region_ordered2]
fig = covid.plotly_twolines(
capita,
'Cases',
'Percent positive (7-day avg)',
groupby='Region',
grouplist=region_ordered2,
groupcolors=colors2,
ncol=2,
plotcolors=['steelblue', 'darkmagenta', 'lightsteelblue'],
secondary_scale=1/400,
date_min=date_start,
range_max=per100k,
col1_mode='avg-bar',
col2_mode='line',
plotlabels = {'title': 'Regional Cases and Percent Positive',
'yaxis': 'Cases per 100K',
'yaxis_secondary': 'Percent positive',
},
savefile=savefile,
showfig=False,
)
# fig.update_xaxes(title_text='Date of test result')
fig.update_yaxes(secondary_y=True, tickformat=',.0%')
fig.update_traces(secondary_y=True, hovertemplate='%{y:.1%}')
# add image of regions
fig.add_layout_image(
dict(
source='https://covid-wisconsin.com/assets/Map-Regions-Small.png',
xref="paper", yref="paper",
x=1, y=0.95,
sizex=0.28, sizey=0.28,
xanchor='right', yanchor='middle'
)
)
# Insert breaks into trace names for legend
fig.update_traces(name='Percent positive<br>(7-day avg)',
selector=dict(name='Percent positive (7-day avg)'))
fig.update_traces(name='Cases<br>(7-day avg)',
selector=dict(name='Cases (7-day avg)'))
# move legend
fig.update_layout(
legend=dict(
orientation='v',
yanchor="top",
y=1,
xanchor="left",
x=0.48,
font_size=13,
bgcolor='rgba(0,0,0,0)',
)
)
fig.write_html(
file=savefile,
include_plotlyjs='cdn',
default_height=1000,
)
os.startfile(savefile)