-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUpdateTableauScraping.py
237 lines (169 loc) · 9.03 KB
/
UpdateTableauScraping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# -*- coding: utf-8 -*-
"""
Update data files scraped from Tableau dashboards on the DHS website
Includes:
- Vaccines by age, race, ethnicity
- Vaccines by manufacturer
- Deaths by date of death
Uses TableauScraper, https://github.com/bertrandmartel/tableau-scraping
Designed to be run with Github Actions.
Created on Tue Apr 27 09:22:05 2021
@author: 212367548
"""
import pandas as pd
import pickle
from tableauscraper import TableauScraper as TS
#%% Helper functions
def format_date(date_str):
return pd.to_datetime(date_str).strftime('%Y-%m-%d')
def update_file(filename, update, on):
# load file of previous data
compiled = pd.read_csv(filename)
# first update any overlapping data
# set indices to the "on" columns, for both previous and updated data
compiled = compiled.set_index(on)
update = update.set_index(on)
compiled.update(update)
# then reset indices and do a merge to add new data
compiled = compiled.reset_index()
update = update.reset_index()
compiled = pd.merge(compiled, update, how='outer')
# save updated file
compiled.to_csv(filename, index=False)
def loads_with_retries(ts, url, retries):
for attempt in range(retries):
try:
ts.loads(url)
except Exception as e:
err = e
print('Retrying TS load...')
else:
break
else:
raise err
return ts
#%% Wrap all with exception
#%% vaccine allocation
try:
# url = 'https://bi.wisconsin.gov/t/DHS/views/VaccineDistribution/Allocated?:embed_code_version=3&:embed=y&:loadOrderID=0&:display_spinner=no&:showAppBanner=false&:display_count=n&:showVizHome=n&:origin=viz_share_link'
# updated url 18-May-2021:
# url = 'https://bi.wisconsin.gov/t/DHS/views/COVID-19VaccineAdministration/Allocated?:embed_code_version=3&:embed=y&:loadOrderID=0&:display_spinner=no&:showAppBanner=false&:display_count=n&:showVizHome=n&:origin=viz_share_link'
# updated url 15-Sep-2021:
url = 'https://bi.wisconsin.gov/t/DHS/views/COVID-19VaccineAdministration/Administration?:embed_code_version=3&:embed=y&:loadOrderID=0&:display_spinner=no&:showAppBanner=false&:display_count=n&:showVizHome=n&:origin=viz_share_link'
ts = TS()
ts = loads_with_retries(ts, url, 3)
# ts.loads(url)
allocation_dash = ts.getWorkbook()
#%% manufacturer counts
manufacturer = allocation_dash.worksheets[1].data
col_rename = {'Trade Name-value': 'Trade Name',
'SUM(Immunization Count)-alias': 'Count'}
manufacturer = manufacturer[col_rename.keys()]
manufacturer = manufacturer.rename(columns=col_rename)
manufacturer.Count = pd.to_numeric(manufacturer.Count.copy())
manufacturer = manufacturer.set_index('Trade Name').T
# Will not necessarily match the sum of all the trade names
manufacturer['All'] = allocation_dash.worksheets[2].data.iloc[0,1]
# manufacturer.insert(0, 'Reporting date', pd.to_datetime(allocation_dash.worksheets[2].data.iloc[0,2]))
manufacturer.insert(0, 'Reporting date', allocation_dash.worksheets[2].data.iloc[0,2])
# Rename stuff
manufacturer = manufacturer.reset_index(drop=True)
manufacturer.columns.name = ''
#%% Update manufacturer file
man_file = 'data\\vaccinations\\Vax-Manuf-WI.csv'
update_file(man_file, manufacturer, on='Reporting date')
except:
print('Error in vaccine administration scraping')
#%%
try:
#%%
# Vaccine by county and age
# url = 'https://bi.wisconsin.gov/t/DHS/views/VaccinesAdministeredtoWIResidents_16129838459350/VaccinatedWisconsin-County?:embed_code_version=3&:embed=y&:loadOrderID=1&:display_spinner=no&:showAppBanner=false&:display_count=n&:showVizHome=n&:origin=viz_share_link'
# updated url 18-May-2021:
url = 'https://bi.wisconsin.gov/t/DHS/views/VaccinesAdministeredtoWIResidents_16212677845310/VaccinatedWisconsin-County?:embed_code_version=3&:embed=y&:loadOrderID=1&:display_spinner=no&:showAppBanner=false&:display_count=n&:showVizHome=n&:origin=viz_share_link'
ts = TS()
ts = loads_with_retries(ts, url, 3)
vax_dash = ts.getWorkbook()
vax_complete = vax_dash.setParameter('Initiation or Completion', 'Total population who have completed the series')
repdate = vax_dash.getWorksheet('Title Header').data.iloc[0,-1]
datafile = 'data\\vaccinations\\vax-dashboards_'+format_date(repdate)+'.pkl'
with open(datafile, 'wb') as f:
pickle.dump([allocation_dash, vax_dash, vax_complete], f)
#%% Extract data for vaccines by age group
col_rename = {'Age-value': 'Age group',
'SUM(Initiation or completed count for TT)-alias': 'Initiated #',
'AGG(Calc- Initiation or Full Coverage (cap))-alias': 'Initiated %'
}
# vax_age = vax_dash.worksheets[1].data[col_rename.keys()]
# get worksheet by name instead of index, index seems to be unstable
vax_age = vax_dash.getWorksheet('Age vax/unvax County').data[col_rename.keys()]
vax_age = vax_age.rename(columns=col_rename)
col_rename = {'Age-value': 'Age group',
'SUM(Initiation or completed count for TT)-alias': 'Completed #',
'AGG(Calc- Initiation or Full Coverage (cap))-alias': 'Completed %'
}
# vax_age_complete = vax_complete.worksheets[8].data[col_rename.keys()]
# get worksheet by name instead of index, index seems to be unstable
vax_age_complete = vax_complete.getWorksheet('Age vax/unvax County').data[col_rename.keys()]
vax_age_complete = vax_age_complete.rename(columns=col_rename)
# merge the initiated and completed data
vax_age = vax_age.merge(vax_age_complete)
# add date
vax_age.insert(0, 'Reporting date', repdate)
#%% Update age group file
vax_age_file = 'data\\vaccinations\\Vax-Age-WI.csv'
update_file(vax_age_file, vax_age, on=['Reporting date', 'Age group'])
#%% Extract data for vaccines by race & ethnicity
# first doses ----
race_rename = {'Race-alias': 'Race',
'SUM(Initiation or completed count for TT)-alias': 'Initiated #',
'AGG(Calc- Initiation or Full Coverage (cap))-alias': 'Initiated %'
}
ethn_rename = {'Ethnicity-value': 'Ethnicity',
'SUM(Initiation or completed count for TT)-alias': 'Initiated #',
'AGG(Calc- Initiation or Full Coverage (cap))-alias': 'Initiated %'
}
# get worksheets by name
vax_race = vax_dash.getWorksheet('Race vax/unvax county').data[race_rename.keys()]
vax_ethn = vax_dash.getWorksheet('Ethnicity vax/unvax county').data[ethn_rename.keys()]
# rename columns
vax_race = vax_race.rename(columns=race_rename)
vax_ethn = vax_ethn.rename(columns=ethn_rename)
# second doses ----
race_rename = {'Race-alias': 'Race',
'SUM(Initiation or completed count for TT)-alias': 'Completed #',
'AGG(Calc- Initiation or Full Coverage (cap))-alias': 'Completed %'
}
ethn_rename = {'Ethnicity-value': 'Ethnicity',
'SUM(Initiation or completed count for TT)-alias': 'Completed #',
'AGG(Calc- Initiation or Full Coverage (cap))-alias': 'Completed %'
}
vax_race_complete = vax_complete.getWorksheet('Race vax/unvax county').data[race_rename.keys()]
vax_ethn_complete = vax_complete.getWorksheet('Ethnicity vax/unvax county').data[ethn_rename.keys()]
vax_race_complete = vax_race_complete.rename(columns=race_rename)
vax_ethn_complete = vax_ethn_complete.rename(columns=ethn_rename)
# merge the initiated and completed data
vax_race = vax_race.merge(vax_race_complete)
vax_ethn = vax_ethn.merge(vax_ethn_complete)
# add date
vax_race.insert(0, 'Reporting date', repdate)
vax_ethn.insert(0, 'Reporting date', repdate)
#%% Update race/ethnicity files
vax_race_file = 'data\\vaccinations\\Vax-Race-WI.csv'
vax_ethn_file = 'data\\vaccinations\\Vax-Ethnicity-WI.csv'
update_file(vax_race_file, vax_race, on=['Reporting date', 'Race'])
update_file(vax_ethn_file, vax_ethn, on=['Reporting date', 'Ethnicity'])
#%%
except:
print('Error in vaccine by age/race scraping')
#%% Get deaths by date of death
try:
cdeath_url = 'https://bi.wisconsin.gov/t/DHS/views/County-leveldailydeathsconfirmedandprobable_16214287829690/Countydailydeaths?:embed_code_version=3&:embed=y&:loadOrderID=3&:display_spinner=no&:showAppBanner=false&:display_count=n&:showVizHome=n&:origin=viz_share_link'
ts = loads_with_retries(ts, cdeath_url, 3)
cdeath_dash = ts.getWorkbook()
update_date = format_date(cdeath_dash.worksheets[0].data.iloc[0,-1])
death_data = cdeath_dash.worksheets[1].data
death_file = 'data\\deaths\\Deaths by day auto_' + update_date + '.csv'
death_data.to_csv(death_file)
except:
print('Error in deaths scraping')