-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWorkSurgePredictor.py
178 lines (134 loc) · 5.09 KB
/
WorkSurgePredictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -*- coding: utf-8 -*-
"""
Created on Dec 15 09:03:15 2020
Idea for a surge protector
@author: Matt Bayer
"""
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import datetime
import covid
#%% Load data
state = covid.read_covid_data_wi('state')
# rename
col_rename = {'Date': 'Date', 'POS_NEW': 'Cases', 'TEST_NEW': 'Tests', 'DTH_NEW': 'Deaths', 'HOSP_NEW': 'Hospitalizations'}
state = state.rename(columns=col_rename)
#%% create weekly sums
weekly = state[col_rename.values()]
weekly = weekly.set_index('Date')
weekly = weekly.rolling(7).sum()
weekly = weekly.reset_index()
# sums ending on Monday, i.e. Tuesday-Monday (because Tuesday is when they
# report results from Monday, so this is results from a Monday-Sunday).
weekly = weekly.loc[weekly.Date.apply(lambda a: a.weekday() == 0)]
weekly = weekly.reset_index()
weekly['Positivity'] = weekly['Cases'] / weekly['Tests']
# multiply by 1e5 just so it's on same scale as cases/tests
weekly['Pos Index'] = weekly['Positivity'] * 1e5
# arbitrary prevalence measure
weekly['Prevalence Index'] = np.sqrt(weekly['Cases'] * weekly['Positivity']) * 700
weekly.plot(x='Date', y=['Cases', 'Tests', 'Pos Index', 'Prevalence Index'], marker='.')
#%%
quit()
#%% Plot all cases vs. deaths
savefile = '.\\docs\\assets\\plotly\\Surge-Predictor.html'
fig = covid.plotly_twolines(
state,
'Positivity',
'Cases',
plotcolors=['violet', 'steelblue'],
secondary_scale=1e4,
# plotlabels = {'title': 'Surge Detector<br>(assuming CFR '+str(CFR)+'%)',
# 'yaxis': 'Deaths',
# 'yaxis_secondary': 'Cases',
# },
column1_bar=True,
savefile=savefile,
)
# # save_png = '.\\docs\\assets\\Cases-Deaths-WI_2020-12-06.png'
# save_png = '.\\docs\\assets\\Cases-Deaths-WI.png'
# fig.write_image(
# save_png,
# width=900,
# height=600,
# engine='kaleido',
# )
# os.startfile(save_png)
#%% Plot cases vs cases-30
if False:
fig = covid.plotly_twolines(
state,
'Cases',
'Cases over 30',
plotcolors=['steelblue', 'rebeccapurple'],
# secondary_scale=CFR,
plotlabels = {'title': 'WI Cases and Cases over 30',
'yaxis': 'Cases',
# 'yaxis_secondary': 'Deaths',
},
column1_bar=False,
savefile='.\\docs\\assets\\plotly\\Cases-Cases30-WI.html',
)
#%% Cases over 30 vs deaths
CFR_30 = 1.4
fig = covid.plotly_twolines(
state,
delay_str,
'Cases over 30',
plotcolors=['firebrick', 'rebeccapurple', 'rosybrown'],
secondary_scale=1/(CFR_30/100),
plotlabels = {'title': 'WI Deaths and Cases over 30yr<br>(Assume CFR '+str(CFR_30)+'% for >30yr)',
'yaxis': 'Deaths',
'yaxis_secondary': 'Cases',
},
column1_bar=True,
savefile='.\\docs\\assets\\plotly\\Cases30-Deaths-WI.html',
)
#%% Cases over 50 vs deaths
# interesting, actually doesn't work that well
CFR_50 = 2.0
state, delay_str = create_delayed_deaths(state, delay=12)
fig = covid.plotly_twolines(
state,
delay_str,
'Cases over 50',
plotcolors=['firebrick', 'rebeccapurple', 'rosybrown'],
secondary_scale=1/(CFR_50/100),
plotlabels = {'title': 'WI Deaths and Cases over 50yr<br>(Assume CFR '+str(CFR_50)+'% for >50yr)',
'yaxis': 'Deaths',
'yaxis_secondary': 'Cases',
},
column1_bar=True,
savefile='.\\docs\\assets\\plotly\\Cases50-Deaths-WI.html',
)
#%% Compare with deaths by death date
def read_death_raw(death_file):
death_raw = pd.read_csv(death_file)
# Note: key is to download the file and then re-save it in Excel specifically
# as csv, otherwise it's actually tab delimited and harder to read in in python
death = death_raw.iloc[:,2:]
death = death.rename(columns={'Unnamed: 2': 'series'})
death.iloc[0,0] = 'Date'
death = death.set_index('series').T.reset_index(drop=True)
death.columns.name = ''
death['Date'] = pd.to_datetime(death['Date']+'-2020')
death = death.set_index('Date')
return death
death_03 = read_death_raw('.\\data\\Deaths by day stacked_2020-12-03.csv')
death_04 = read_death_raw('.\\data\\Deaths by day stacked_2020-12-04.csv')
death_10 = read_death_raw('.\\data\\Deaths by day stacked_2020-12-10.csv')
death = death_10
death['Deaths 3-Dec'] = pd.to_numeric(death_03['Confirm + Probable deaths'])
death['Deaths 4-Dec'] = pd.to_numeric(death_04['Confirm + Probable deaths'])
death['Deaths 10-Dec'] = pd.to_numeric(death_10['Confirm + Probable deaths'])
death['Deaths (reported)'] = state.set_index('Date')['Deaths']
# compare = 'Deaths 4-Dec'
compare = 'Deaths 10-Dec'
death.plot(y=[compare, 'Deaths (reported)'])
death['Difference'] = death[compare] - death['Deaths 3-Dec']
death.plot(y=['Deaths 3-Dec', compare, 'Difference'])
# seems like a huge delay in deaths... but if there is such a big delay, then
# I can't trust the deaths-by-date curve right now either, and you would have
# to expect continued large numbers of reports coming in for past days.