-
Notifications
You must be signed in to change notification settings - Fork 1
/
bank.xml
397 lines (321 loc) · 14.9 KB
/
bank.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
<?xml version='1.0' encoding='UTF-8'?>
<bank xmlns="https://checkit.clontz.org" version="0.2">
<title>VecIt! Vector and Multivariable Calculus</title>
<slug>vecit-calculus</slug>
<url>http://matthematician.github.io/vecit</url>
<outcomes>
<outcome>
<title>Surfaces and Graphs</title>
<slug>N1</slug>
<path>outcomes/N1</path>
<description>
Use traces and contours to describe surfaces in three-space that are graphs of two-variable functions and level sets of three-variable functions, including quadric surfaces.
</description>
</outcome>
<outcome>
<title>Vector Arithmetic</title>
<slug>N2</slug>
<path>outcomes/N2</path>
<description>
Perform and geometrically interpret sums, differences, scalar multiples, and magnitudes of vectors in n-dimensional space.
</description>
</outcome>
<outcome>
<title>Vector Geometry</title>
<slug>N3</slug>
<path>outcomes/N3</path>
<description>
Choose among, and use, dot products and cross products of vectors to compute quantities of geometric interest, including angles and areas.
</description>
</outcome>
<outcome>
<title>Parametrized Lines</title>
<slug>N4</slug>
<path>outcomes/N4</path>
<description>
Determine parametric equations for a line in three-space, given sufficient information to determine a point and a direction vector.
</description>
</outcome>
<outcome>
<title>Planes</title>
<slug>N5</slug>
<path>outcomes/N5</path>
<description>
Determine a level set equation for a plane in three-space defined either by a point and a normal vector, or by three given non-collinear points.
</description>
</outcome>
<outcome>
<title>Parameterized Curve</title>
<slug>NA</slug>
<path>outcomes/NA</path>
<description>
Sketch and parameterize portions of oriented curves, including those defined by intersections of surfaces and those which involve circular motions.
</description>
</outcome>
<outcome>
<title>Derivatives and Curvature</title>
<slug>NB</slug>
<path>outcomes/NB</path>
<description>
Use derivatives to determine, and distinguish among, a parameterized curve’s tangent, speed, velocity, and acceleration.
</description>
</outcome>
<outcome>
<title>Derivatives and Curvature</title>
<slug>NB2</slug>
<path>outcomes/NB2</path>
<description>
Use derivatives to determine, and distinguish among, a parameterized curve’s tangent, speed, velocity, and acceleration.
</description>
</outcome>
<outcome>
<title>Equilibrium</title>
<slug>NC</slug>
<path>outcomes/NC</path>
<description>
Solve vector equations to find the equilibrium state of a system.
</description>
</outcome>
<outcome>
<title>Intersections</title>
<slug>ND</slug>
<path>outcomes/ND</path>
<description>
Find the intersection of lines and planes.
</description>
</outcome>
-->
<outcome>
<title>Partial Derivative Computations</title>
<slug>D1</slug>
<path>outcomes/D1</path>
<description>
Compute the partial derivatives of a given multivariable function, up to second order.
</description>
</outcome>
<outcome>
<title>Tangent Planes</title>
<slug>D2</slug>
<path>outcomes/D2</path>
<description>
Find equations for tangent planes to surfaces expressed as graphs of two-variable functions and as level sets of three-variable functions.
</description>
</outcome>
<outcome>
<title>The Gradient of f(x,y)</title>
<slug>D3</slug>
<path>outcomes/D3</path>
<description>Compute the gradient vector of a two-variable function, give its geometric interpretation with respect both to the contours of the function and to its graph, and use it to calculate directional derivatives in a given direction.</description>
</outcome>
<outcome>
<title>Critical Points of Multivariable Functions</title>
<slug>D4</slug>
<path>outcomes/D4</path>
<description>Use its gradient vector to locate critical points of a multivariable function, and its second-order partial derivatives to classify critical points as local maximum, local minimum, saddle points, or degenerate.</description>
</outcome>
<outcome>
<title>Critical Points of Multivariable Functions pt 2</title>
<slug>D4a</slug>
<path>outcomes/D4a</path>
<description>Use its gradient vector to locate critical points of a multivariable function, and its second-order partial derivatives to classify critical points as local maximum, local minimum, saddle points, or degenerate.</description>
</outcome>
<outcome>
<title>Multivariable Limits</title>
<slug>DA</slug>
<path>outcomes/DA</path>
<description>
Use continuity and polar-coordinate methods to calculate limits of multivariable functions, and use multiple-approach methods to demonstrate when such a limit does not exist.
</description>
</outcome>
<outcome>
<title>Partial Derivative Interpretations</title>
<slug>DB</slug>
<path>outcomes/DB</path>
<description>
Carefully interpret the first- and second-order partial derivatives of a multivariable function as slopes and concavities of its graph’s traces.
</description>
</outcome>
<outcome>
<title>Multivariable Chain Rule</title>
<slug>DC</slug>
<path>outcomes/DC</path>
<description>
Identify all routes of composition when two or more multivariable functions are composed, and use the multivariable chain rule to compute such a function’s partial derivatives.
</description>
</outcome>
<outcome>
<title>The Gradient of f(x,y,z)</title>
<slug>DD</slug>
<path>outcomes/DD</path>
<description>
Compute the gradient vector of a three-variable function, give its geometric interpretation with respect to its level
surfaces, and use it to calculate directional derivatives in a given direction.
</description>
</outcome>
<outcome>
<title>Optimization and Extreme Values of Multivariable Functions</title>
<slug>DE</slug>
<path>outcomes/DE</path>
<description>
Use both critical points and a parametrization of its boundary to find absolute maximum and minimum values of a multivariable function on a closed and bounded domain.
</description>
</outcome>
<outcome>
<title>Constrained Optimization</title>
<slug>DF</slug>
<path>outcomes/DF</path>
<description>
Use Lagrange multipliers to determine absolute maximum and minimum values of a multivariable function subject to one or more constant constraints.
</description>
</outcome>
<outcome>
<title>Differentiability</title>
<slug>DG</slug>
<path>outcomes/DG</path>
<description>
Prove or disprove that a continuous function is differentiable.
</description>
</outcome>
<outcome>
<title>Mixed Partials</title>
<slug>DH</slug>
<path>outcomes/DH</path>
<description>
Identify when a function's mixed partial derivatives are not equal.
</description>
</outcome>
<outcome>
<title>The "Tape-Measure" Method</title>
<slug>S1</slug>
<path>outcomes/S1</path>
<description>Describe a given region in the xy-plane using coordinate inequalities, in at least two distinct ways.</description>
</outcome>
<outcome>
<title>Double Integrals</title>
<slug>S2</slug>
<path>outcomes/S2</path>
<description>Set up and evaluate double integrals over general regions, using iterated integrals with "tape-measured" bounds.</description>
</outcome>
<outcome>
<title>Double Integrals in Polar Coordinates</title>
<slug>SA</slug>
<path>outcomes/SA</path>
<description>
Use polar coordinates to transform the integrand, the bounds, and the area element of a given double integral.
</description>
</outcome>
<outcome>
<title>Surface Area</title>
<slug>SB</slug>
<path>outcomes/SB</path>
<description>
Set up double integrals to compute surface areas of portions of parametrized surfaces.
</description>
</outcome>
<outcome>
<title>Triple Integrals</title>
<slug>SC</slug>
<path>outcomes/SC</path>
<description>
Set up and evaluate triple integrals over general regions, using iterated integrals and “tape-measured” bounds.
</description>
</outcome>
<outcome>
<title>Change of Variables</title>
<slug>SD1</slug>
<path>outcomes/SD1</path>
<description>
Use change of variables and come up with a better description.
</description>
</outcome>
<outcome>
<title>Triple Integrals in Cylindrical and Spherical Coordinates</title>
<slug>SD2</slug>
<path>outcomes/SD2</path>
<description>
Use cylindrical and spherical coordinates to transform the integrand, the bounds, and the volume element of a given triple integral.
</description>
</outcome>
<outcome>
<title>Applications of Multiple Integrals</title>
<slug>SE</slug>
<path>outcomes/SE</path>
<description>
Use double and triple integrals to solve applied problems involving mass, density, and probability.
</description>
</outcome>
-->
<outcome>
<title>Vector Fields</title>
<slug>V1</slug>
<path>outcomes/V1</path>
<description>Sketch and identify vector fields in two and three dimensions, including gradient vector fields of two- and three-variable functions.</description>
</outcome>
<outcome>
<title>Line Integral Computation</title>
<slug>V2</slug>
<path>outcomes/V2</path>
<description>Directly compute the line integral of a vector field over a given oriented path.</description>
</outcome>
<outcome>
<title>Gradient Vector Fields</title>
<slug>V3</slug>
<path>outcomes/V3</path>
<description>Classify a given vector field as gradient (or not), find scalar potential functions for gradient fields, and apply the fundamental theorem of calculus for path-independent line integrals.</description>
</outcome>
<outcome>
<title>Green's Theorem</title>
<slug>V4</slug>
<path>outcomes/V4</path>
<description>Identify when Green’s Theorem may be applied to find the total circulation of a vector field along a closed path, and use the Theorem to carry out this computation using a double integral.</description>
</outcome>
<outcome>
<title>Line Integral Heuristics</title>
<slug>VA</slug>
<path>outcomes/VA</path>
<description>Predict from a sketch whether a given line integral of a vector field along an oriented path is positive, negative, or zero.</description>
</outcome>
<outcome>
<title>Path-Independent Integrals</title>
<slug>VB</slug>
<path>outcomes/VB</path>
<description>Identify when the Fundamental Theorem of Line Integrals may be applied, and use the Theorem to compute line integrals using a scalar potential function.
</description>
</outcome>
<outcome>
<title>Curl of a Vector Field</title>
<slug>VC</slug>
<path>outcomes/VC</path>
<description>Compute the scalar curl of a two-dimensional vector field and the vector curl of a three-dimensional vector field. Use notions of circulation to predict whether the scalar curl of a given two-dimensional vector field is positive, negative, or zero.
.
</description>
</outcome>
<outcome>
<title>Divergence of a Vector Field</title>
<slug>VD</slug>
<path>outcomes/VD</path>
<description>Compute the divergence of a vector field, and use notions of flux to predict whether the divergence of a given vector field is
positive, negative, or zero.
.
</description>
</outcome>
<outcome>
<title>Flux Integrals</title>
<slug>VE</slug>
<path>outcomes/VE</path>
<description>Directly compute the flux integral of a vector field through a given oriented surface.
.
</description>
</outcome>
<outcome>
<title>Stokes and Divergence Theorems</title>
<slug>VF</slug>
<path>outcomes/VF</path>
<description>Identify when a flux integral calculation
may be made simpler through the application of Stokes’ Theorem (resp. Divergence Theorem), and use the appropriate Theorem to carry out this
computation using a line integral (resp. triple integral).
.
</description>
</outcome>
</outcomes>
</bank>