|
| 1 | +!_TAG_FILE_FORMAT 2 /extended format; --format=1 will not append ;" to lines/ |
| 2 | +!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted, 2=foldcase/ |
| 3 | +!_TAG_OUTPUT_EXCMD mixed /number, pattern, mixed, or combineV2/ |
| 4 | +!_TAG_OUTPUT_FILESEP slash /slash or backslash/ |
| 5 | +!_TAG_OUTPUT_MODE u-ctags /u-ctags or e-ctags/ |
| 6 | +!_TAG_PATTERN_LENGTH_LIMIT 96 /0 for no limit/ |
| 7 | +!_TAG_PROC_CWD /home/matias/repos/encuestador-de-hogares/ // |
| 8 | +!_TAG_PROGRAM_AUTHOR Universal Ctags Team // |
| 9 | +!_TAG_PROGRAM_NAME Universal Ctags /Derived from Exuberant Ctags/ |
| 10 | +!_TAG_PROGRAM_URL https://ctags.io/ /official site/ |
| 11 | +!_TAG_PROGRAM_VERSION 5.9.0 // |
| 12 | +AGLO_Region codigo/routines/preprocesar_datos.py /^AGLO_Region = AGLO_Region.loc[~((AGLO_Region.AGLOMERADO == 33) & (AGLO_Region.Region == 'Pampean/;" v |
| 13 | +AGLO_Region codigo/routines/preprocesar_datos.py /^AGLO_Region = AGLO_Region.loc[~((AGLO_Region.AGLOMERADO == 93) & (AGLO_Region.Region == 'Pampean/;" v |
| 14 | +AGLO_Region codigo/routines/preprocesar_datos.py /^AGLO_Region = pd.read_csv('.\/data\/info\/radio_ref.csv', usecols = ['AGLOMERADO', 'Region']).dr/;" v |
| 15 | +AGLO_rk codigo/routines/preprocesar_datos.py /^ AGLO_rk = AGLO_rk.sort_values('P47T').reset_index()$/;" v |
| 16 | +AGLO_rk codigo/routines/preprocesar_datos.py /^ AGLO_rk = training.loc[(training.CAT_OCUP == 3) & (training.P47T >= 100)].groupb/;" v |
| 17 | +Actualizaciones Periodicas: README.md /^## Actualizaciones Periodicas:$/;" s chapter:encuestador-de-hogares |
| 18 | +Datos README.md /^## Datos$/;" s chapter:encuestador-de-hogares |
| 19 | +EPH codigo/routines/preprocesar_datos.py /^ EPH = EPH.merge(AGLO_Region)$/;" v |
| 20 | +EPH codigo/routines/preprocesar_datos.py /^ EPH = hogar.merge(indiv_table, on=['CODUSU', 'ANO4', 'TRIMESTRE', 'AGLOMERADO'])$/;" v |
| 21 | +EPH codigo/routines/preprocesar_datos.py /^ EPH = pd.concat([EPH, EPH_sampled]).reset_index(drop=True)$/;" v |
| 22 | +EPH_sampled codigo/routines/preprocesar_datos.py /^ EPH_sampled = EPH.sample(n=sample_size, replace=True, random_state=42)$/;" v |
| 23 | +Ejemplos: README.md /^## Ejemplos:$/;" s chapter:encuestador-de-hogares |
| 24 | +Metodologia: README.md /^## Metodologia:$/;" s chapter:encuestador-de-hogares |
| 25 | +Modelos README.md /^## Modelos$/;" s chapter:encuestador-de-hogares |
| 26 | +Reg_rk codigo/routines/preprocesar_datos.py /^ Reg_rk = Reg_rk.sort_values('P47T').reset_index()$/;" v |
| 27 | +Reg_rk codigo/routines/preprocesar_datos.py /^ Reg_rk = training.loc[(training.CAT_OCUP == 3) & (training.P47T >= 100)].groupby/;" v |
| 28 | +[markdown] codigo/routines/recalcular_rankings.py /^# %% [markdown]$/;" c |
| 29 | +aglo_list codigo/routines/recalcular_rankings.py /^aglo_list = []$/;" v |
| 30 | +aglo_rk codigo/routines/recalcular_rankings.py /^ aglo_rk = pd.concat(aglo_list)$/;" v |
| 31 | +args codigo/routines/entrenar_modelos.py /^args = parser.parse_args()$/;" v |
| 32 | +args codigo/routines/preprocesar_datos.py /^args = parser.parse_args()$/;" v |
| 33 | +cleanup_temp_dir codigo/routines/preprocesar_datos.py /^def cleanup_temp_dir():$/;" f |
| 34 | +col_mon codigo/routines/preprocesar_datos.py /^col_mon = [u'P21', u'P47T', u'PP08D1', u'TOT_P12', u'T_VI', u'V12_M', u'V2_M', u'V3_M', u'V5_M']$/;" v |
| 35 | +columnas_pesos codigo/routines/entrenar_modelos.py /^columnas_pesos = [u'P21', u'P47T', u'PP08D1', u'TOT_P12', u'T_VI', u'V12_M', u'V2_M', u'V3_M', u/;" v |
| 36 | +columnas_pesos data/info/variables.py /^columnas_pesos = [u'P21', u'P47T', u'PP08D1', u'TOT_P12', u'T_VI', u'V12_M', u'V2_M', u'V3_M', u/;" v |
| 37 | +cpi codigo/routines/preprocesar_datos.py /^cpi = cpi['2003':]$/;" v |
| 38 | +cpi codigo/routines/preprocesar_datos.py /^cpi = pd.read_csv(cpi_url, index_col=0)$/;" v |
| 39 | +cpi_M codigo/routines/preprocesar_datos.py /^cpi_M = cpi_M['2003':]$/;" v |
| 40 | +cpi_M codigo/routines/preprocesar_datos.py /^cpi_M = pd.read_csv(cpi_M_url, index_col=0)[['index']]$/;" v |
| 41 | +cpi_M_url codigo/routines/preprocesar_datos.py /^cpi_M_url = 'https:\/\/raw.githubusercontent.com\/matuteiglesias\/IPC-Argentina\/main\/data\/inf/;" v |
| 42 | +cpi_url codigo/routines/preprocesar_datos.py /^cpi_url = 'https:\/\/raw.githubusercontent.com\/matuteiglesias\/IPC-Argentina\/main\/data\/info\//;" v |
| 43 | +df codigo/routines/preprocesar_datos.py /^ df = df.rename(columns={'ESTADO': 'CONDACT'})$/;" v |
| 44 | +df codigo/routines/preprocesar_datos.py /^ df = pd.read_csv(file_, delimiter=';', usecols=['CODUSU', 'ANO4', 'TRIMESTRE/;" v |
| 45 | +df codigo/routines/preprocesar_datos.py /^ df = pd.read_csv(file_, index_col=None, header=0, delimiter=';', usecols=['CODUS/;" v |
| 46 | +encuestador-de-hogares README.md /^# encuestador-de-hogares$/;" c |
| 47 | +endyr codigo/routines/entrenar_modelos.py /^endyr = args.years[1]$/;" v |
| 48 | +endyr codigo/routines/preprocesar_datos.py /^endyr = args.years[1] + 1 # Include the end year in the range$/;" v |
| 49 | +endyr codigo/routines/recalcular_rankings.py /^endyr = 2025$/;" v |
| 50 | +file_path codigo/routines/preprocesar_datos.py /^ file_path = os.path.join(temp_dir, os.path.basename(url))$/;" v |
| 51 | +fit_model codigo/routines/entrenar_modelos.py /^def fit_model(train_data, x_cols, y_cols, out_filename,$/;" f |
| 52 | +hogar codigo/routines/preprocesar_datos.py /^ hogar = hogar.drop_duplicates()$/;" v |
| 53 | +hogar codigo/routines/preprocesar_datos.py /^ hogar = hogar.loc[~hogar.IV1.isin([9])]$/;" v |
| 54 | +hogar codigo/routines/preprocesar_datos.py /^ hogar = pd.concat(list_).drop_duplicates()$/;" v |
| 55 | +hogar_files codigo/routines/preprocesar_datos.py /^ hogar_files = []$/;" v |
| 56 | +hogar_urls codigo/routines/preprocesar_datos.py /^ hogar_urls = [f'{repo_base_url}\/hogar\/usu_hogar_t{quarter:01}{yr}.txt' for quarter in /;" v |
| 57 | +indiv codigo/routines/preprocesar_datos.py /^ indiv = indiv.dropna(subset = ['P47T'])$/;" v |
| 58 | +indiv codigo/routines/preprocesar_datos.py /^ indiv = pd.concat(list_).dropna(subset=['P47T']).drop_duplicates()$/;" v |
| 59 | +indiv_files codigo/routines/preprocesar_datos.py /^ indiv_files = []$/;" v |
| 60 | +indiv_table codigo/routines/preprocesar_datos.py /^ indiv_table = indiv[list(indiv.columns.difference(hogar.columns)) + ['CODUSU', '/;" v |
| 61 | +indiv_urls codigo/routines/preprocesar_datos.py /^ indiv_urls = [f'{repo_base_url}\/individual\/usu_individual_t{quarter:01}{yr}.txt' for q/;" v |
| 62 | +ix codigo/routines/preprocesar_datos.py /^ix = cpi_M.loc['2016-01'].values[0][0]$/;" v |
| 63 | +list_ codigo/routines/preprocesar_datos.py /^ list_ = []$/;" v |
| 64 | +list_ codigo/routines/preprocesar_datos.py /^ list_ = []$/;" v |
| 65 | +names_EPH codigo/routines/preprocesar_datos.py /^names_EPH = ['IX_TOT','CH04','CH06','CONDACT', 'AGLOMERADO',$/;" v |
| 66 | +names_censo codigo/routines/preprocesar_datos.py /^names_censo = ['IX_TOT', 'P02', 'P03', 'CONDACT', 'AGLOMERADO',$/;" v |
| 67 | +out codigo/routines/entrenar_modelos.py /^ out = '.\/modelos\/clf4_'+q+'_ARG'$/;" v |
| 68 | +out codigo/routines/entrenar_modelos.py /^ out = '.\/modelos\/clf1_'+yr+'_ARG'$/;" v |
| 69 | +out codigo/routines/entrenar_modelos.py /^ out = '.\/modelos\/clf2_'+yr+'_ARG'$/;" v |
| 70 | +out codigo/routines/entrenar_modelos.py /^ out = '.\/modelos\/clf3_'+yr+'_ARG'$/;" v |
| 71 | +overwrite codigo/routines/entrenar_modelos.py /^overwrite = args.overwrite$/;" v |
| 72 | +overwrite codigo/routines/preprocesar_datos.py /^overwrite = args.overwrite$/;" v |
| 73 | +parser codigo/routines/entrenar_modelos.py /^parser = argparse.ArgumentParser(description='A script to process data for a range of years')$/;" v |
| 74 | +parser codigo/routines/preprocesar_datos.py /^parser = argparse.ArgumentParser()$/;" v |
| 75 | +pd codigo/routines/entrenar_modelos.py /^import pandas as pd$/;" I nameref:module:pandas |
| 76 | +pd codigo/routines/preprocesar_datos.py /^import pandas as pd$/;" I nameref:module:pandas |
| 77 | +pd codigo/routines/recalcular_rankings.py /^import pandas as pd$/;" I nameref:module:pandas |
| 78 | +predecir1 codigo/routines/entrenar_modelos.py /^predecir1 = ['CAT_OCUP', 'CAT_INAC', 'CH07']$/;" v |
| 79 | +predecir2 codigo/routines/entrenar_modelos.py /^predecir2 = ['INGRESO', 'INGRESO_NLB', 'INGRESO_JUB', 'INGRESO_SBS']$/;" v |
| 80 | +predecir3 codigo/routines/entrenar_modelos.py /^predecir3 = ['PP07G1','PP07G_59', 'PP07I', 'PP07J', 'PP07K']$/;" v |
| 81 | +predecir4 codigo/routines/entrenar_modelos.py /^predecir4 = columnas_pesos$/;" v |
| 82 | +regiones codigo/routines/recalcular_rankings.py /^ regiones = {$/;" v |
| 83 | +regs_list codigo/routines/recalcular_rankings.py /^regs_list = []$/;" v |
| 84 | +regs_rk codigo/routines/recalcular_rankings.py /^ regs_rk = pd.concat(regs_list)$/;" v |
| 85 | +regs_table codigo/routines/recalcular_rankings.py /^ regs_table = pd.read_csv(training_file, usecols=['ANO4', 'Region', 'Reg_rk']).drop_dupli/;" v |
| 86 | +repo_base_url codigo/routines/preprocesar_datos.py /^repo_base_url = 'https:\/\/raw.githubusercontent.com\/matuteiglesias\/microdatos-EPH-INDEC\/mast/;" v |
| 87 | +response codigo/routines/preprocesar_datos.py /^ response = requests.get(url)$/;" v |
| 88 | +sample_size codigo/routines/preprocesar_datos.py /^ sample_size = int(len(EPH) * 0.05)$/;" v |
| 89 | +startyr codigo/routines/entrenar_modelos.py /^startyr = args.years[0]$/;" v |
| 90 | +startyr codigo/routines/preprocesar_datos.py /^startyr = args.years[0]$/;" v |
| 91 | +startyr codigo/routines/recalcular_rankings.py /^startyr = 2023$/;" v |
| 92 | +temp_dir codigo/routines/preprocesar_datos.py /^temp_dir = '.\/temp_data\/'$/;" v |
| 93 | +train_q codigo/routines/entrenar_modelos.py /^ train_q = train_data.loc[train_data.Q == q]$/;" v |
| 94 | +training codigo/routines/preprocesar_datos.py /^ training = training.loc[training[col] != 9]$/;" v |
| 95 | +training codigo/routines/preprocesar_datos.py /^ training = EPH.rename(columns = dict(zip(names_EPH, names_censo)))$/;" v |
| 96 | +training codigo/routines/preprocesar_datos.py /^ training = training.loc[training.P47T >= -0.001].fillna(0)$/;" v |
| 97 | +training codigo/routines/preprocesar_datos.py /^ training = training.merge(AGLO_rk[['ANO4', 'AGLOMERADO', 'AGLO_rk']]).merge(Reg_/;" v |
| 98 | +training codigo/routines/preprocesar_datos.py /^ training = training.sort_values('CODUSU')$/;" v |
| 99 | +training_file codigo/routines/preprocesar_datos.py /^ training_file = '.\/data\/training\/EPHARG_train_'+str(yr)+'.csv'$/;" v |
| 100 | +training_file codigo/routines/recalcular_rankings.py /^ training_file = f'.\/data\/training\/EPHARG_train_{yr}.csv'$/;" v |
| 101 | +x_cols1 codigo/routines/entrenar_modelos.py /^x_cols1 = ['IX_TOT', 'P02', 'P03', 'AGLO_rk', 'Reg_rk', 'V01', 'H05', 'H06',$/;" v |
| 102 | +x_cols1 data/info/variables.py /^x_cols1 = ['IX_TOT', 'P02', 'P03', 'AGLO_rk', 'Reg_rk', 'V01', 'H05', 'H06',$/;" v |
| 103 | +x_cols2 codigo/routines/entrenar_modelos.py /^x_cols2 = x_cols1 + predecir1$/;" v |
| 104 | +x_cols2 data/info/variables.py /^x_cols2 = x_cols1 + y_cols1$/;" v |
| 105 | +x_cols3 codigo/routines/entrenar_modelos.py /^x_cols3 = x_cols2 + predecir2$/;" v |
| 106 | +x_cols3 data/info/variables.py /^x_cols3 = x_cols2 + y_cols2$/;" v |
| 107 | +x_cols4 codigo/routines/entrenar_modelos.py /^x_cols4 = x_cols3 + predecir3$/;" v |
| 108 | +x_cols4 data/info/variables.py /^x_cols4 = x_cols3 + y_cols3$/;" v |
| 109 | +y_cols codigo/routines/entrenar_modelos.py /^y_cols = ['CAT_OCUP', 'P47T', 'PP10E', 'PP10D', 'PP07K', 'PP07I', 'V3_M', 'PP07G4', 'CH16', 'T_V/;" v |
| 110 | +y_cols data/info/variables.py /^y_cols = ['CAT_OCUP', 'P47T', 'PP10E', 'PP10D', 'PP07K', 'PP07I', 'V3_M', 'PP07G4', 'CH16', 'T_V/;" v |
| 111 | +y_cols1 data/info/variables.py /^y_cols1 = ['CAT_OCUP', 'CAT_INAC', 'CH07']$/;" v |
| 112 | +y_cols2 data/info/variables.py /^y_cols2 = ['INGRESO', 'INGRESO_NLB', 'INGRESO_JUB', 'INGRESO_SBS']$/;" v |
| 113 | +y_cols3 data/info/variables.py /^y_cols3 = ['PP07G1','PP07G_59', 'PP07I', 'PP07J', 'PP07K']$/;" v |
| 114 | +y_cols4 codigo/routines/entrenar_modelos.py /^y_cols4 = predecir4$/;" v |
| 115 | +y_cols4 data/info/variables.py /^y_cols4 = columnas_pesos$/;" v |
| 116 | +yr codigo/routines/preprocesar_datos.py /^ yr = str(y)[2:]$/;" v |
| 117 | +yr codigo/routines/recalcular_rankings.py /^ yr = str(y)[2:]$/;" v |
0 commit comments