-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCombineRectangularRegions.m
174 lines (163 loc) · 9.65 KB
/
CombineRectangularRegions.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
function CombinedRegion = CombineRectangularRegions(RegionsToCombine)
NumRegions = length(RegionsToCombine);
% Making sure we're rounding to the same number of digits
for n = 1:NumRegions - 1
assert(RegionsToCombine(n).DigitsToRoundTo == RegionsToCombine(n + 1).DigitsToRoundTo, "The digits to round to have to be the same for the various regions but they are not equal")
end
DigitsToRoundTo = RegionsToCombine(1).DigitsToRoundTo;
xValuesAll = nan(1, 4 * NumRegions);
yValuesAll = nan(1, 4 * NumRegions);
for n = 1:NumRegions
PointMatrix = RegionsToCombine(n).MotorVertexList;
StartIndex = 4 * n - 3;
EndIndex = 4 * n;
xValuesAll(StartIndex:EndIndex) = [PointMatrix(:, 1)];
yValuesAll(StartIndex:EndIndex) = [PointMatrix(:, 2)];
end
xValues = unique(round(xValuesAll, DigitsToRoundTo), "sorted");
yValues = unique(round(yValuesAll, DigitsToRoundTo), "sorted");
[PointA, PointB, PointC, PointD, PointE, PointF, PointG, PointH, ...
OuterPointSequence, ...
UpperRight, UpperLeft, LowerRight, LowerLeft, ...
CIndex, EIndex, GIndex, LastIndex] = FindOuterPointSequence( ...
RegionsToCombine);
%% MOTOR VERTEX LIST
% Now need to find all the points that go in the MotorVertexList; and
% we'll organize them in such a way that it's not too hard to figure
% out what the SimplexMatrix is based on the organization/order. Then
% We'll have to find the weights.
LeftBorderPoints = [OuterPointSequence(:, EIndex + 1:LastIndex) ...
OuterPointSequence(:, 1)];
RightBorderPoints = flip(OuterPointSequence(:, 2:EIndex), 2);
LeftBorderPointsExpanded = transpose(interp1(LeftBorderPoints(2, :), transpose(LeftBorderPoints), yValues));
RightBorderPointsExpanded = transpose(interp1(RightBorderPoints(2, :), transpose(RightBorderPoints), yValues));
FinalXValues = unique(round([LeftBorderPointsExpanded(1, :) xValues RightBorderPointsExpanded(1, :)], DigitsToRoundTo), "sorted");
LowerBorderPoints = flip(OuterPointSequence(:, CIndex + 1:GIndex), 2);
UpperBorderPoints = [OuterPointSequence(:, GIndex + 1:LastIndex) ...
OuterPointSequence(:, 1:CIndex)];
LowerBorderPointsExpanded = round(transpose(interp1(LowerBorderPoints(1, :), transpose(LowerBorderPoints), FinalXValues)), DigitsToRoundTo);
UpperBorderPointsExpanded = round(transpose(interp1(UpperBorderPoints(1, :), transpose(UpperBorderPoints), FinalXValues)), DigitsToRoundTo);
FinalYValues = unique(round([LowerBorderPointsExpanded(2, :) yValues UpperBorderPointsExpanded(2, :)], DigitsToRoundTo), "sorted");
SizesOfVerticalLines = nan(size(FinalXValues));
% There will be a triangle below between points F and G, no
% triangle below between points E and F, and a triangle below
% between points D and E.
% There will be a triangle above between points H and A, no
% triangle above between points A and B, and a triangle above
% between points B and C
MotorVertexList = [];
% For each x value, we want to go from the lowest y value to the
% highest y value, but such that those y values are between the lower
% border and the upper border at the given x value
for xIndex = 1:length(FinalXValues)
% Lowest y value for the given x value is added
AdditionalVertices = round([FinalXValues(xIndex); LowerBorderPointsExpanded(2, xIndex)], DigitsToRoundTo);
yIndex = 1;
% All the in between values for y, given the x value
while FinalYValues(yIndex) < UpperBorderPointsExpanded(2, xIndex)
if FinalYValues(yIndex) > LowerBorderPointsExpanded(2, xIndex)
assert(any([FinalXValues(xIndex); FinalYValues(yIndex)] ~= AdditionalVertices(:, size(AdditionalVertices, 2))), "There is a repeat point in the MotorVertexMatrix -- this shouldn't happen, check the code")
AdditionalVertices = [AdditionalVertices [FinalXValues(xIndex); FinalYValues(yIndex)]];
end
yIndex = yIndex + 1;
end
% The biggest value for y, given the x value
assert(any([FinalXValues(xIndex); UpperBorderPointsExpanded(2, xIndex)] ~= AdditionalVertices(:, size(AdditionalVertices, 2))), "There is a repeat point in the MotorVertexMatrix -- this shouldn't happen, check the code")
AdditionalVertices = [AdditionalVertices [FinalXValues(xIndex); UpperBorderPointsExpanded(2, xIndex)]];
if ~isempty(MotorVertexList)
assert(any(MotorVertexList(:, size(MotorVertexList, 2)) ~= AdditionalVertices(:, 1)), "There is a repeat point in the MotorVertexMatrix -- this shouldn't happen, check the code")
end
MotorVertexList = [MotorVertexList AdditionalVertices];
SizesOfVerticalLines(xIndex) = size(AdditionalVertices, 2);
end
MotorVertexList = transpose(round(MotorVertexList, DigitsToRoundTo));
%% SIMPLEX MATRIX
SimplexMatrix = [];
MinPointLeftIndex = 1;
for vLine = 1:length(SizesOfVerticalLines) - 1
MaxPointLeftIndex = MinPointLeftIndex + SizesOfVerticalLines(vLine) - 1;
MinPointRightIndex = MaxPointLeftIndex + 1;
MaxPointRightIndex = MinPointRightIndex + SizesOfVerticalLines(vLine + 1) - 1;
%
% % The bounds of this vertical column
% MinPointLeftX = MotorVertexList(MinPointLeftIndex, 1);
% MaxPointLeftX = MotorVertexList(MaxPointLeftIndex, 1);
% MinPointRightX = MotorVertexList(MinPointRightIndex, 1);
% MaxPointRightX = MotorVertexList(MaxPointRightIndex, 1);
MinRectangleLeftIndex = MinPointLeftIndex;
MaxRectangleLeftIndex = MaxPointLeftIndex;
MinRectangleRightIndex = MinPointRightIndex;
MaxRectangleRightIndex = MaxPointRightIndex;
while MotorVertexList(MinRectangleLeftIndex, 2) ~= MotorVertexList(MinRectangleRightIndex, 2)
if MotorVertexList(MinRectangleLeftIndex, 2) > MotorVertexList(MinRectangleRightIndex, 2)
% The left min is above the right min
MinRectangleRightIndex = MinRectangleRightIndex + 1;
else
% The right min is above the left min
MinRectangleLeftIndex = MinRectangleLeftIndex + 1;
end
end
while MotorVertexList(MaxRectangleLeftIndex, 2) ~= MotorVertexList(MaxRectangleRightIndex, 2)
if MotorVertexList(MaxRectangleLeftIndex, 2) > MotorVertexList(MaxRectangleRightIndex, 2)
% The left max is above the right max
MaxRectangleLeftIndex = MaxRectangleLeftIndex - 1;
else
% The right max is above the left max
MaxRectangleRightIndex = MaxRectangleRightIndex - 1;
end
end
assert(MaxRectangleLeftIndex - MinRectangleLeftIndex == MaxRectangleRightIndex - MinRectangleRightIndex, "Something has gone wrong and the left column and right column heights of the rectangles don't match each other -- check the code because this will cause problems")
ColumnHeight = MaxRectangleLeftIndex - MinRectangleLeftIndex;
LLIndex = MinPointLeftIndex;
LRIndex = MinPointRightIndex;
if MinPointRightIndex < MinRectangleRightIndex
% Then there is a triangle below on the left half of the shape
SimplexMatrix = [SimplexMatrix; LLIndex LRIndex MinRectangleRightIndex];
LRIndex = MinRectangleRightIndex;
elseif MinPointLeftIndex < MinRectangleLeftIndex
% Then there is a triangle below on the right half of the shape
SimplexMatrix = [SimplexMatrix; MinRectangleLeftIndex LLIndex LRIndex];
LLIndex = MinRectangleLeftIndex;
end
% Doing the rectangles
for row = 1:ColumnHeight
SimplexMatrix = [SimplexMatrix; LLIndex LRIndex LRIndex + 1; LLIndex + 1 LLIndex LRIndex + 1];
LLIndex = LLIndex + 1;
LRIndex = LRIndex + 1;
end
assert(MaxRectangleRightIndex == LRIndex, "We're not at the right place in the iteration -- something has gone wrong")
assert(MaxRectangleLeftIndex == LLIndex, "We're not at the right place in the iteration -- something has gone wrong")
% Doing upper triangle if applicable
if MaxPointRightIndex > MaxRectangleRightIndex
% Then there is a triangle above on the left half of the shape
SimplexMatrix = [SimplexMatrix; LLIndex LRIndex MaxPointRightIndex];
elseif MaxPointLeftIndex > MaxRectangleLeftIndex
% Then there is a triangle above on the right half of the shape
SimplexMatrix = [SimplexMatrix; MaxPointLeftIndex LLIndex LRIndex];
end
% Incrementing for next loop
MinPointLeftIndex = MinPointRightIndex;
end
%% WEIGHTS
NumSimplices = size(SimplexMatrix, 1);
Weights = zeros(1, NumSimplices);
for s = 1:NumSimplices
for r = 1:NumRegions
RegionLowerLeft = transpose(LowerLeft(:, r));
RegionUpperRight = transpose(UpperRight(:, r));
% The vertices of the current simplex
Point1 = MotorVertexList(SimplexMatrix(s, 1), :);
Point2 = MotorVertexList(SimplexMatrix(s, 2), :);
Point3 = MotorVertexList(SimplexMatrix(s, 3), :);
% This is a point in the middle of this simplex
CentralPoint = (Point1 + Point2 + Point3)/3;
if (all(CentralPoint >= RegionLowerLeft) && all(CentralPoint <= RegionUpperRight))
% If the selected point is in this region, 1 gets added to
% the weight
Weights(s) = Weights(s) + 1;
end
end
end
Weights = max(Weights, ones(size(Weights)));
CombinedRegion = WeightedMotorSimplicialComplex(MotorVertexList, SimplexMatrix, Weights);
end