-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_mtbench_results.py
69 lines (53 loc) · 1.95 KB
/
show_mtbench_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
import json
from pathlib import Path
from huggingface_hub import notebook_login
from transformers import AutoTokenizer
import time
from vllm import LLM, SamplingParams
from tqdm import tqdm
# Argument parser setup
parser = argparse.ArgumentParser(description='Process model name.')
parser.add_argument('--model', type=str, help='Model name or path', required=True)
# Parse arguments
args = parser.parse_args()
MODEL_NAME = args.model
print("Loading ", MODEL_NAME)
llm = LLM(model=MODEL_NAME, max_model_len=8192, max_num_seqs=2048, enforce_eager=True)
llm.llm_engine.tokenizer.eos_token_id = 32000
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
sampling_params = SamplingParams(temperature=0.0, max_tokens=4096, skip_special_tokens=False, stop_token_ids=[2,32000])
def create_turn(text: str) -> str:
messages = [
{
"role": "system",
"content": "Du bist ein hilfsbereiter Assistent."
},
{
"role": "user",
"content": text
}
]
return tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
print("Evaluating ", MODEL_NAME)
start = time.time()
# Load texts from JSON file
questions_file_path = './show_mtbench_results.json'
convs = []
with open(questions_file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
for item in tqdm(data.values()):
turn1 = create_turn(item["turns"][0])
output = llm.generate(turn1, sampling_params)
result = output[0].outputs[0].text
turn2 = create_turn(item["turns"][1])
output = llm.generate(f"{turn1}\n{result}\n{turn2}", sampling_params)
print(f"{output[0].outputs[0].text}\n")
conv = f"{output[0].prompt}\n{output[0].outputs[0].text}\n"
convs.append(conv)
with open('convs.json', 'w', encoding='utf-8') as file2:
json.dump(convs, file2, ensure_ascii=False, indent=4)
duration_vllm = time.time() - start
print("Duration: ", duration_vllm)